
Pr
ep
rin
t

Resilient Distributed Constraint Reasoning to Autonomously Configure and
Adapt IoT Environments

PIERRE RUST, Orange Labs, France

GAUTHIER PICARD, ONERA/DTIS, Université de Toulouse, France

FANO RAMPARANY, Orange Labs, France

In this paper, we investigate multi-agent techniques to install autonomy and adaptation in IoT-based smart environment settings, like

smart home scenarios. We particularly make use of the smart environment configuration problem (SECP) framework, and map it

to a distributed optimization problem (DCOP). This consists in enabling smart objects to coordinate and self-configure as to meet

both user-defined requirements and energy efficiency, by operating a distributed constraint reasoning process over a computation

graph. As to cope with the dynamics of the environment and infrastructure (e.g. by adding or removing devices), we also specify

the 𝑘-resilient distribution of graph-structured computations supporting agent decisions, over dynamic and physical multi-agent

systems. We implement a self-organizing distributed repair method, based on a distributed constraint optimization algorithm to adapt

the distribution as to ensure the system still performs collective decisions and remains resilient to upcoming changes. We provide a

full stack of mechanisms to install resilience in operating stateless DCOP solution methods, which results in a robust approach using a

fast DCOP algorithm to repair any stateless DCOP solution methods at runtime. We experimentally evaluate the performances of

these techniques when operating stateless DCOP algorithms to solve SECP instances.

CCS Concepts: • Computing methodologies→Multi-agent systems; Self-organization; • Theory of computation→ Discrete
optimization; • Human-centered computing→ Ubiquitous and mobile computing.

ACM Reference Format:
Pierre Rust, Gauthier Picard, and Fano Ramparany. 2022. Resilient Distributed Constraint Reasoning to Autonomously Configure and

Adapt IoT Environments. ACM Trans. Internet Technol. 1, 1 (January 2022), 31 pages.

1 INTRODUCTION

Due to recent advances in technology and the decrease of the cost of embedded computing, both on the CPU and

communication side, the ideas pioneered in academic works like Pervasive Computing and Ubiquitous Computing are

currently materializing into real world solutions, which are generally referred to as the Internet of Things (IoT). In

these systems many connected devices, typically equipped with computation capabilities, are used together and allow

building high-level services, which can be aware of, and act on, the real world. One specific use case for these systems

is IoT-based Ambient Intelligence (AmI), where this technology is used to facilitate the life of users by embedding

computation, sensors and actuators in the environment. This area has been especially active in the past years, both in

the industrial and the enthusiasts communities, with the emergence of many Smart Home Environment (SHE) solutions

that seek to realize this idea in the home context. However, these systems are still in their infancy and their builders

face many issues and challenges in order to reach the full potential of these new technical capabilities.

We envision an AmI setup as a distributed system where devices, which we consider as agents, have to cooperatively,

autonomously and dynamically come up with a collective behavior that facilitates the life of the user. This solution will

typically take the form of a spontaneous configuration of the environment, for example by setting, depending of various

Authors’ addresses: Pierre Rust, Orange Labs, Rennes, France, pierre.rust@orange.com; Gauthier Picard, ONERA/DTIS, Université de Toulouse, France,

Toulouse, gauthier.picard@onera.fr; Fano Ramparany, Orange Labs, Grenoble, France, fano.ramparany@orange.com.

2022. Manuscript submitted to ACM

Manuscript submitted to ACM 1

Pr
ep
rin
t

2 P. Rust et al.

conditions, appropriate light, heat, humidity, etc. levels in the home. In any meaningful environment, many devices act

on the same parameter (e.g. several light sources are used in the same area) and some coordination is required among

them.

Modeling Goal-Oriented Smart Home Scenarios. The first question we wanted to answer in this research is how to

model a SHE in a way that really matches the vision of AmI. One key element for that objective is that the user should

not need to care about the inner workings of the system: detailed and manual configuration must be avoided in favor of

the simple specification of goals. The devices should then autonomously decide how to reach these goals in the best

possible way. To answer this challenge, we modeled coordination in an AmI environment as an optimization problem

within the Distributed Constraint Optimization Problem (DCOP) framework. We coined the resulting model the Smart

Environment Configuration Problem (SECP) [29].

Installing Decentralized Coordination in the Real World. Following the first challenge, an important question to answer

is how to install such distributed model on the real devices that the SHE is made of. Indeed, most current research

on the DCOP framework is based on assumptions that do not hold when applying the model to real world situations

like IoT-based AmI –e.g. only one variable per agent, and non explicit deployment of constraints. When solving an

optimization problem distributively, the decision making process is implemented through computations that perform

the optimization process and must physically run on some hardware substrate. As a consequence, we argue that in

order to apply the DCOP framework to real world problems, these decision making computations must be distributed

on the agents/devices. This distribution must take into account the characteristics of the target environment, which

encompass, for the SECP, the limited capabilities of the devices and the constrained communication. We thus proposed

a definition of optimal distribution, for SECP and for more generic IoT systems, and developed optimal and heuristic

approaches for computing this distribution, based on [30].

Providing Resilience in Decentralized Decision Making. The goal of IoT systems is to facilitate the life of its users.

Therefore, an important challenge of such systems is ensuring reliability and resilience. However, a SHE is also a

dynamic and open system: the characteristics of the problem may change at runtime and devices may join or leave the

system at any moment. Thus, the question is how to ensure that the system keeps providing the services required by

the users, with the equivalent quality of service and quality of experience, whilst the infrastructure is changing. For

this purpose, we defined the concept of 𝑘-resilience and proposed several distributed solution methods to achieve this,

by using replication-based repair techniques [32].

All these models and techniques compose a full stack of tools to install self-configuration, adaptation and resilience

to IoT-based environments. The paper presents these contributions as follows. Section 2 first presents the core concepts

related to distributed constraint optimization and some dedicated solution methods. Section 3 expounds the SECP

model, which defines the problem to be cooperatively solved by a set of devices deployed in a smart environment.

Section 4 specifically focuses on techniques to deploy the resulting decisions and computations over a set of smart

devices, depending on their capabilities and connectivity. Section 5 next provides methods to adapt a distribution of

computations to the dynamics of the infrastructure, e.g. when devices disappear due to failures and disconnection. We

assess the different investigated models and techniques through experimental evaluation on simulated smart house

environments, in Section 6, and briefly showcase a physical demonstrator made of a network of Raspberry Pis. We

discuss related works in Section 7 before concluding with some perspectives in Section 8.

Manuscript submitted to ACM

Pr
ep
rin
t

Resilient Distributed Constraint Reasoning to Autonomously Configure and Adapt IoT Environments 3

𝑎1

𝑎3

𝑎2
𝑥1

𝑥2

𝑥3

𝑥4

(a) Constraint graph

𝑎1

𝑎3

𝑎2
𝑥1

𝑓1,3 𝑥3 𝑓2,3

𝑓1,2

𝑥2 𝑓2,4 𝑥4

(b) Factor graph

Fig. 1. Graphical representations for DCOP

2 BACKGROUND ON DISTRIBUTED CONSTRAINT OPTIMIZATION

Let us introduce the overarching framework of our contributions: the Distributed Constraint Optimization Problem

(DCOP) framework.

2.1 The DCOP Framework

While solution methods for standard Constraint Satisfaction Problem (CSP) and Constraint Optimization Problem

(COP) [3] are usually centralized, an extension of these topics has emerged in the Multi-Agent Systems (MAS) research

eco-system, where the constraint reasoning process is distributed among agents. Each agent has control over some of

the variables and agents interact to find a solution to the problem. Distributed Constraint Satisfaction Problem (DisCSP)

is the distributed counterpart of CSP and only considers hard constraints to formalize distributed problem solving [38].

It was later extended, and superseded in most works, by the DCOP framework.

Definition 1 (DCOP). A discrete Distributed Constraint Optimization Problem (DCOP) is formally represented by

a tuple ⟨A,X,D, F , 𝛼⟩, where A = {𝑎1, . . . , 𝑎 |𝐴 | } is a set of agents; X = {𝑥1, . . . , 𝑥𝑛} are discrete variables, owned
by the agents; D = {D1, . . . ,D𝑛} is a set of finite domains, such that variable 𝑥𝑖 takes values in D𝑖 = {𝑣𝑖

1
, . . . , 𝑣𝑖

𝑘
};

F = {𝑓1, . . . , 𝑓𝑚} is a set of soft constraints, where 𝑓𝑖 is a function that defines a cost ∈ R ∪ {∞} for each combination of

values to the variables in its scope; 𝛼 : X → A is a function that assigns the control of each variable to an agent.

A solution to a DCOP is a complete assignment 𝜎 that minimizes a global objective function 𝐹 (𝜎) that aggregates the
individual costs 𝑓𝑖 ’s: 𝜎∗ = argmin𝜎 𝐹 (𝜎). The sum is generally used as an aggregation function: 𝜎∗ = argmin𝜎

∑
𝑓𝑖 ∈F 𝑓𝑖 .

Without loss of generality, the notion of cost can be replaced by the notion of utility ∈ R∪ {−∞}. In this case, solving

a DCOP is a maximization problem of the overall sum of utilities. Moreover, DCOPs are also often represented using

graphical models. Constraint graphs are commonly used to represent DCOPs where variables are represented as nodes

and binary constraints as edges, with the addition of enclosing nodes (a.k.a. compound nodes) representing the agents

and the variables they are responsible for –see Figure 1a. These nodes form a communication graph among agents.

Factor graphs are also used for DCOPs. As constraints (a.k.a. factors) are explicitly represented in these graphs, they

must also be attached to agents, as represented on Figure 1b.

2.2 DCOP Solution Methods

Like with classical constraint optimization, finding a solution for a DCOP is NP-hard in the general case. A large number

of algorithms, complete and incomplete, many of which have several variants, have been proposed by the research

community. In this section, we will not be able to give a detailed description of all algorithms, we redirect the reader

Manuscript submitted to ACM

Pr
ep
rin
t

4 P. Rust et al.

to [8] for a very comprehensive survey of DCOP and to the original papers for each algorithm. We thus focus on the

algorithms that have been used the most during this study, namely DSA, MGM, and Max-Sum.

Distributed Stochastic Algorithm (DSA) is a family of incomplete, local search, very lightweight algorithms based

on a rather simple idea: agents start with a random value from their domain and regularly evaluate if the quality of

their own partial assignment, defined as the total values of those constraints in which they are involved, could be

improved by selecting a new value [39]. This evaluation is based on the knowledge of the values currently selected by

their neighbors (defined by the constraint graph). If this quality can be improved, the agent decides randomly, with an

activation probability 𝑝 , to select the corresponding value and send its updated state to its neighbors. Although not

strictly anytime, DSA is an iterative algorithm and can be used to obtain a complete assignment at any time, in real time,

with a solution quality improving, on average, over time. However, in the general case DSA provides no guarantee of

monotonicity: as there is no coordination in the decision process and an agent’s local knowledge may be outdated,

two agents may simultaneously take contradictory decisions, resulting in a decrease in the overall result’s quality.

Five variations of this basic principle have been studied, depending on the strategy used for values change. DSA-B is

considered to be the most efficient approach in the general case. The value used for activation probability 𝑝 has also

been shown in [39] to have a huge influence in DSA’s efficiency and quality and exhibits phase transition property.

When the right variant and activation probability have been selected for a given problem class, DSA provides very

good quality results, with minimal network and computational load, which makes it highly scalable. Asynchronous

Distributed Stochastic Algorithm (A-DSA) is the asynchronous version of DSA [9].

Maximum Gain Message (MGM) implements a gain message-passing protocol [18]. Like DSA, MGM algorithm is an

incomplete local search algorithm that can handle 𝑛-ary constraints. MGM is a synchronous algorithm: at each round,

agents compute the maximum change in quality, named gain, they could achieve by selecting a new value and send this

gain to their neighbors. An agent is then allowed to change its value only if its gain is larger than the gain received

from all its neighbors. This mechanism ensures that two variables involved in the same constraint will never change

their value in the same round. This process repeats until a termination condition is met. MGM is able to guarantee

monotonicity; eliminating the stochastic aspect of DSA ensures that the solution quality only improves over time.

Monotonicity is a very interesting feature, at the expense of a higher tendency to become trapped in a local minima. To

mitigate this issue, there exists a coordinated version of MGM, usually Maximum Gain Message with 2-coordination

(MGM-2), but it can be extended to MGM-𝑘 , where 𝑘 agents can coordinate a simultaneous (i.e. in the same round)

change of values. Asynchronous Monotonic Distributed Local Search (AMDLS) [26] has recently been proposed and is

similar to MGM but does not support coordination like MGM-𝑘 .

MaxSum is a inference-based incomplete algorithm [5]. It is a derivative of themax-product message passing algorithm

in the logarithmic space. MaxSum is complete on acyclic constraint graphs, but approximate on cyclic graphs. It performs

a marginalization process of the cost functions, and optimizing the costs for each given variable. The value assignments

take into account their impact on the marginalized cost function. It operates on a factor graph and cost messages flow on

the edges, from factors to variables, and vice versa. When a factor or a variable computes twice the same message for the

same recipient, it stops propagation and the algorithm converges if all message propagation has stopped. Termination is

usually implemented by both observing convergence and by force-stopping propagation after a predetermined number

of rounds. By simply summing its incoming messages an agent can assess at any time an approximation of the marginal

function of its variables and select the values that maximize the social welfare in the system by finding the argmax

of this marginal function. This also means that MaxSum can be used to get a continuously updated solution, without

waiting for termination, even in dynamic problems. Empirical evaluations show that it can compute very good quality

Manuscript submitted to ACM

Pr
ep
rin
t

Resilient Distributed Constraint Reasoning to Autonomously Configure and Adapt IoT Environments 5

solutions with acceptable computation load compared to representative complete algorithms. It should be noted that

it can also be implemented asynchronously, as stated in [5], with agents emitting updated messages whenever they

receive an update from on of their neighbors. We denote this variant Asynchronous MaxSum Algorithm (A-MaxSum).

MaxSum is also well suited to dynamic settings, as the agents can maintain an up-to-date estimate of the current state’s

utility by continuously emitting update messages.

3 MODELING SMART ENVIRONMENT CONFIGURATION PROBLEMS AS DISTRIBUTED CONSTRAINT
OPTIMIZATION PROBLEMS

In this section, we start from a sample SHE scenario in order to illustrate the coordinated behaviors our model should

implement in AmI systems and introduce notations required to map these behaviors to an optimization problem, as

presented in [29]. We then show how this optimization problem can be solved in a distributed setting such as AmI

scenarios. As SHEs can naturally be represented as MAS, we map our SECP optimization problem to a DCOP.

3.1 Sample Ambient Intelligence Scenario

We consider the following AmI scenario. Our system is a smart home, composed of many connected devices: light

bulbs, roller shutters, TV sets, luminosity sensors and presence detectors, etc. The overall objective of our system is

to maintain a luminosity level in the rooms of the house that satisfies the inhabitants. These users can express their

wishes by configuring simple behaviors, aka scenes, using an application on a user interface device. These scenes can

use the values of sensors or the states of some devices as triggers for setting a specific luminosity goal in a given area.

Such a configuration can be expressed by a rule as represented in Example 1, although the users would of course not

write it in this form, but more probably use some kind of graphical representation to express it.

Example 1 (Scene specification). Rule (1) defines a scene, triggered only when the light level of the living room is less

than 60, where that light level should be set at 60 and the shutter of the living room should be closed:

IF presence_living_room = 1

AND light_sensor_living_room < 60

THEN light_level_living_room ← 60

AND shutter_living_room ← 0

(1)

One important characteristic of such rules is that they do not contain the list of actions required, but only the

objective requested by the user. This means that our AmI system will need to figure out the best actions that would

lead to meet the requested objectives. It also means that the system uses whatever devices available when the scene is

triggered: devices may become faulty and be added or removed, this will automatically be taken into account when

searching for the solution. Finally, we want our system to select the most energy-saving configuration for a given scene.

Given this scenario, we want the devices of this system to self-organize and cooperate autonomously to reach the

user-defined objectives, avoiding any dedicated device whose purpose would be to gather inputs from sensors and

decide the sequence of actions required to fulfill these objectives.

Each of the connected devices in the AmI environment acts as a sensor or an actuator. Devices’ capabilities and

locations can be used to match candidate devices with a user-defined objective. We consider that a discovery mechanism

is available and that the system knows at any given time the list of available devices with their characteristics. Such

mechanisms are a common requirement in dynamic open environments and are generally based, in current systems, on

mDNS [13] and DNS-SD [12]. As a consequence, we concentrate here on the coordination mechanism. We consider

Manuscript submitted to ACM

Pr
ep
rin
t

6 P. Rust et al.

each device in the system as an agent in a MAS and will devise ways of implementing coordination among these agents

in a dynamic open system.

Finally, note that while we concentrate here, for simplicity’s sake, on devices that can influence on the luminosity of

the environment, this approach could be used for many other environmental settings and more generally for almost

any behavior in an AmI environment.

3.2 Notations for SECP

Our AmI scenario can be seen as an optimization problem with values to assign to actuators, whilst maximizing the

adequacy to user-defined scenes and minimizing the overall energy consumption.

3.2.1 Actuators. Let 𝔄 be the set of available actuators. We note X(𝔄) the set of variables 𝑥𝑖 stating the values of

actuators 𝑖 ∈ 𝔄. We use x𝑖 to refer to a possible state of 𝑥𝑖 ∈ X(𝔄) (i.e. the value assigned to the variable 𝑥𝑖), that is

x𝑖 ∈ D𝑥𝑖 where D𝑥𝑖 is the domain of 𝑥𝑖 and contains values mapping to the actions available on the actuator 𝑖 . For a

light bulb for example, this is the list of light levels that can be emitted by the bulb

Each actuator 𝑖 has a cost to be activated, noted 𝑒𝑖 : D𝑥𝑖 → R+. This cost can be directly derived from the consumption

law of each device. We note F (𝔄) = {𝑒𝑖 |𝑖 ∈ 𝔄} the set of costs for all actuators. Among the possible values, every

actuator 𝑖 has a possible “switched off” state value, noted 0 ∈ D𝑥𝑖 , with an associated cost (most probably 0).

3.2.2 Sensors. Similarly, we note𝔖 the set of available sensors, and X(𝔖) the set of variables 𝑠𝑙 encapsulating their
states. Each variable 𝑠𝑙 take its value in a domainD𝑠𝑙 . We note s𝑙 ∈ D𝑠𝑙 the current state of sensor ℓ ∈ 𝔖. Sensor values

reflect the state of the environment and are not directly controllable by the system: therefore they are read-only values

and do not have a cost function.

3.2.3 Environment State. In order for the user to set their objectives (e.g. requesting a given light level in a given room),

we also need to model the state of the environment. We note Φ the set of states of the environment, and X(Φ) the state
of variables 𝑦 𝑗 encapsulating these states. Each variable 𝑦 𝑗 takes its value in a domain D𝑦 𝑗

and we note y𝑗 ∈ D𝑦 𝑗
the

current value of 𝑦 𝑗 . Like sensors, the environment’s state is of course not directly controllable by the system.

3.2.4 Scenes. Letℜ be the set of user-defined scene rules. Each scene 𝑘 is specified as a condition-action rule expressed

using the set of available devices 𝔄
⋃
𝔖 (actuators and sensors).

The action part of scenes defines objectives by setting target values to scene action variables. These scene action

variables can represent either some actuators or the state of the environment:

(1) When the rule requests some direct action on an actuator, the scene action variable is the variable representing

the state 𝑥𝑖 ∈ X(𝔄) of that actuator. This is the case in the rule of Example 1, which explicitly requires to close

the shutter of the living room. We note x𝑘
𝑖
the target value defined by the user for the scene action variable 𝑥𝑖 in

the rule 𝑘 , with x𝑘
𝑖
∈ D𝑥𝑖 for all 𝑖 and 𝑘 .

(2) When the rule sets a target state for the environment the scene action variable is the variable 𝑦 𝑗 ∈ X(Φ)
representing that state of the environment. For example, the rule in Example 1 sets a target light level in the

living room, which can be acted on by the light bulb actuators located in this room. We note y𝑘
𝑗
the target value

defined by the user for the scene action variable 𝑦 𝑗 in the rule 𝑘 , with y𝑘
𝑗
∈ D𝑦 𝑗

for all 𝑗 and 𝑘 .

Manuscript submitted to ACM

Pr
ep
rin
t

Resilient Distributed Constraint Reasoning to Autonomously Configure and Adapt IoT Environments 7

The condition part of a scene is specified as a conjunction of boolean expressions using state of actuators, 𝑥𝑖 , 𝑖 ∈ 𝔄,

or state of sensors, 𝑠𝑙 , 𝑙 ∈ 𝔖 and binary predicates (e.g. >, <, =). A scene rule can be either active or inactive depending

on the state of devices appearing in the condition part of the rule.

3.2.5 Modeling Physical Constraints. In order for the system to be able to select the right actions to achieve the goals set

by the rules, we must be able to reason upon the link between the actuators’ actions and the state of the environment,

which means we need a model of the physical interactions happening in the real world. For this purpose, we define

functions that we call physical models, noted 𝜙𝑘 , where 𝑆𝜙𝑘
⊆ X(𝔄) is the scope of the model, i.e. the set of actuator

variables influencing one particular aspect of the environment, and D𝜙𝑘
is the domain of the variable representing the

corresponding state of the environment.

𝜙𝑘 :

∏
𝜍∈𝑆𝜙𝑘

D𝜍 → D𝜙𝑘
(2)

Example 2 (Physical model). We can consider that the level of light 𝑦1 in a room depends on the total power of

“light-emitting” devices located installed in the room, i.e. bulbs 𝑥1 and 𝑥2, and a roller shutter 𝑥3: 𝑦1 = 𝜙1 (𝑥1, 𝑥2, 𝑥3) =
30𝑥1 + 30𝑥2 + 10𝑥3. Weights assigned to each 𝑥𝑖 are related to the luminous efficacy of each device [35].

Let 𝜙 𝑗 = |𝑆𝜙 𝑗
| the arity of 𝜙 𝑗 , and F (Φ) = {𝜙 𝑗 } be the set of all physical models between actuators and rule-defined

values.

Note that a physical model function output value is considered here to be an estimation (or prediction) of the value

of some 𝑦 𝑗 , based on the state of the actuators. The quality of the resulting system configuration depends tightly on

the quality of this estimation, and thus on how we define these physical model functions. These functions could be

assessed using physical laws, calibration and machine learning ; however in this work we consider that the functions of

these physical models are known and can be used directly.

3.3 Formulating SECP as an Optimization Problem

Now that we have a definition of the impact of the actuators’ action on the environment, we are able to assess if

the objective of a given rule is met. For this purpose, we define for each scene a utility function, noted 𝑟𝑘 , with

𝑆𝑟𝑘 ⊆ X(𝔄) ∪ X(Φ) ∪ X(𝔖) being the scope of the rule, made of the actuators, sensors and scene action variables used

in the rule:

𝑟𝑘 :

∏
𝑣∈𝑆𝑟𝑘

D𝑣 → R

The more the states of the scene action variables (from X(𝔄) and X(Φ)) are close to the user’s target values for this

scene, the higher the utility. Moreover, if the conditions to activate the rule (from X(𝔄) and X(𝔖)) are not met, the

utility should be neutral, i.e. equals to 0. We can therefore consider 𝑟𝑘s to be functions of the distance between the

states of the scene action variables 𝑥𝑖s (resp. 𝑦 𝑗 s) and the target values x𝑘
𝑖
(resp. y𝑘

𝑗
). We note F (ℜ) = {𝑟𝑘 |𝑘 ∈ ℜ} the

set of rule utility functions.

Example 3 (Scene rule utility). Let us consider the rule from Example 1, where 𝑠1 is the value of the presence sensor.

Here a possible utility function, which is the negated distance between the current value of 𝑦1 and 𝑥3 and their target

Manuscript submitted to ACM

Pr
ep
rin
t

8 P. Rust et al.

values y1
1
= 60 and x1

3
= 0:

𝑟1 (𝑦1, 𝑠1, 𝑥3) =

−|𝑦1 − 60| + 𝑥3 if 𝑠1 = 1

0 otherwise

Using these notations, we can express the SECP as an optimization problem. Our goal is to maximize the utility of

the user-defined rules, while at the same time minimizing the energy consumption of actuators. We must of course also

honor the real world physical constraints, which are not something we can actually optimize and must be modeled as

hard constraints. Based on this, we can straightforwardly map the SECP to a multi-criteria optimization problem.

minimize
𝑥𝑖 ∈X(𝔄)

∑︁
𝑖∈𝔄

𝑒𝑖 and maximize
𝑥𝑖 ∈X(𝔄)
𝑦 𝑗 ∈X(Φ)

∑︁
𝑘∈ℜ

𝑟𝑘

subject to 𝜙 𝑗 (𝑣1𝑗 , . . . , 𝑣
𝜙 𝑗

𝑗
) = 𝑦 𝑗 ∀𝑦 𝑗 ∈ X(Φ)

(3)

Given all the previous concepts and notations, we define the SECP as follows:

Definition 2 (Smart Environment Configuration Problem (SECP)). Given a set of actuators 𝔄, and their related

costs 𝑒𝑖 ∈ F (𝔄), a set of sensors 𝔖, a set of scene rules ℜ and their related utility functions in 𝑟𝑘 ∈ F (ℜ), a set of

environment states Φ, and a set of physical dependency models F (Φ), the Smart Environment Configuration Problem (or

SECP) is represented by a tuple ⟨𝔄, F (𝔄),𝔖,ℜ, F (ℜ),Φ, F (Φ)⟩ and amounts to finding the configuration of actuators

that maximizes the utility of the user-defined rules, whilst minimizing the global energy consumption and fulfilling the

physical dependencies.

3.4 Mapping the SECP to a DCOP

SECP is currently formulated as a multi-objective optimization problem, which is not convenient when mapping to a

DCOP. We could use a Multi-objective DCOP (MO-DCOP) but solution methods for this DCOP extension are quite

heavy and would not fit our target environment, composed of constrained devices. Instead, we choose to aggregate the

two objectives to formulate the problem as a mono-objective optimization problem, using weights 𝜔𝑢 > 0, 𝜔𝑐 > 0:

maximize
𝑥𝑖 ∈X(𝔄)
𝑦 𝑗 ∈X(Φ)

𝜔𝑢

∑︁
𝑘∈ℜ

𝑟𝑘 − 𝜔𝑐

∑︁
𝑖∈𝔄

𝑒𝑖

subject to 𝜙 𝑗 (𝑣1𝑗 , . . . , 𝑣
𝜙 𝑗

𝑗
) = 𝑦 𝑗 ∀𝑦 𝑗 ∈ X(Φ)

(4)

As described in Section 2.1, a DCOP is represented by a tuple ⟨A,X,D, F , 𝜇⟩, therefore to map the SECP to a DCOP

we need to define the sets of agents A, variables X, domains D and constraints F and the mapping function 𝛼 .

3.4.1 Agents. In a DCOP, agents control decision variables and are responsible for selecting an appropriate value for

each of the variable they own. This means that in a physical system agents are entities, embodied by real devices, that

perform any computation required by the DCOP algorithm. Devices with only a sensing role are usually powered on

battery and run as sleepy nodes, meaning that they switch off their communication interface most of the time to save

energy. Therefore, we consider the actuator devices to be the agents, and A = 𝔄. Agent with actuator 𝑖 is denoted 𝑎𝑖 .

Manuscript submitted to ACM

Pr
ep
rin
t

Resilient Distributed Constraint Reasoning to Autonomously Configure and Adapt IoT Environments 9

3.4.2 Variables and Domains. The variables used in our DCOP are simply the set of variables used in the multi-objective

optimization problem (3) representing the SECP. More precisely, the set X contains all the variables whose values are

selected by an agent:

• Actuator variables 𝑥𝑖 can clearly be controlled by agents and are part of X
• Scene action variables 𝑦𝑖 , which represents predicted states of the environment, are also part of 𝑥 . These variables

do not represent any action or decision in the physical environment, they are modeling variables. Yet, agents

do try to affect their value, such that it will reduce the distance to the rule’s goal (i.e. increase its utility) and

X(Φ) ⊂ X.
• On the other hand, the sensor variables 𝑠𝑙 are not part of X as these variables represent sensor values that cannot

be controlled by an agent.

This gives us the following definitions:

X = X(𝔄) ∪ X(Φ) (5)

D = {D𝑥𝑖 |𝑥𝑖 ∈ X(𝔄)} ∪ {D𝑦 𝑗
|𝑦𝑖 ∈ X(Φ)} (6)

3.4.3 Constraints. Constraints of the DCOP are obviously based on the constraints of the optimization problem (3).

However, this problem has a mix of hard and soft constraints, which cannot be dealt with directly by DCOP algorithms,

and DisCSP only support hard constraints. Therefore we need to encode the hard constraints as soft constraints with

infinite costs, noted 𝑦 𝑗 for each 𝑗 ∈ Φ:

𝜑 𝑗 (𝑥1𝑗 , . . . , 𝑥
𝜙 𝑗

𝑗
, 𝑦 𝑗) =

0 if 𝜙 𝑗 (𝑥1𝑗 , . . . , 𝑥

𝜙 𝑗

𝑗
) = 𝑦 𝑗

−∞ otherwise

(7)

We note the set of translated hard constraints F (Φ) and the set of constraints of the DCOP can be defined as:

F = F (𝔄) ∪ F (ℜ) ∪ F (Φ) (8)

3.4.4 Objective. Using these definitions, SECP is then formulated as a DCOP with the following objective:

maximize
𝑥𝑖 ∈X(𝔄)
𝑦 𝑗 ∈X(Φ)

𝜔𝑢

∑︁
𝑘∈ℜ

𝑟𝑘 − 𝜔𝑐

∑︁
𝑖∈𝔄

𝑒𝑖 +
∑︁
𝑗∈Φ

𝜑 𝑗
(9)

Example 4. Figure 2 represents a factor graph for the DCOP of the SHE from Example 1, with 3 actuators (2 light

bulbs and a roller shutter), one physical model and environment state (the light level in the living room), two sensors

(presence and luminosity) and one rule.

Example 5. Figure 3 depicts the factor graph for the SECP of a real house level. Note that, for clarity, rules have been

omitted in this figure.

4 DISTRIBUTION OF THE DECISIONS AND COMPUTATIONS OVER A PHYSICAL MULTI-AGENT
INFRASTRUCTURE

In this section, we present several techniques to distribute decision variables and computations over a set of agents.

While very few works currently exist in this domain, we consider it to be an important part of using DCOP approaches

in physical distributed environments. When implementing a DCOP in a distributed system, agents are embodied in

physical objects (computers, connected objects, etc.) and the actions/decisions of these agents are modeled as variables.

Manuscript submitted to ACM

Pr
ep
rin
t

10 P. Rust et al.

𝑥1

𝑥2

𝑥3

𝑒1

𝑒2

𝑒3

𝜑1 𝑦1 𝑟1

𝑠1

𝑠2

Fig. 2. Factor graph for the scenario of Example 1

Desk

Living
Room

TV

Kitchen

Entrance

Stairs

𝑙𝑑1

𝑙𝑑2
𝑙𝑙𝑣3

𝑙𝑙𝑣2

𝑙𝑙𝑣1𝑙𝑡𝑣1

𝑙𝑡𝑣2 𝑙𝑡𝑣3

𝑙𝑘1 𝑙𝑘2

𝑙𝑘3

𝑙𝑒1

𝑙𝑠1

Fig. 3. Factor graph for a realistic full house level

In general, a variable that models the decision of an agent naturally belongs to the agent that is making, and potentially

applying to the environment, that decision. However it is common, when modeling a problem with a DCOP, to define

variables that can either model shared decisions or represent some abstract concepts needed for decision. One can

think of such variables as modeling artifacts or auxiliary variables. In such cases, the definition of the 𝛼 mapping is not

straightforward.

4.1 Distributing Computations

As DCOP algorithms are distributed message passing algorithms, they are defined as a set of building blocks, where

each block’s behavior consists in sending and receiving messages. We call these building blocks computations, noted 𝑐𝑖 :

Definition 3 (Computation). In a DCOP algorithm, a computation 𝑐𝑖 is a piece of code that runs on an agent and

only interacts with other computations through message sending.

We note C the set of computations required to solve a DCOP with a given DCOP algorithm. These computations

communicate with each other through message sending and a computation can only send messages to computations that

it knows and depends on, forming a graph whose edges can the defined as a set 𝐸C . We note N(𝑐𝑖) = {𝑐 𝑗 | (𝑖, 𝑗) ∈ 𝐸C}
the set of neighbors of 𝑐𝑖 in this graph.

Definition 4 (Computation Graph). A computation graph 𝐺C is a tuple ⟨C, 𝐸C⟩ where C is a set of computations

and 𝐸C is a set of edges (𝑖, 𝑗) representing the dependencies between computations.

Of course, the exact set of computations, and their dependencies, needed for a given system depends on the DCOP

used to model the problem (number of variables, constraints, etc.) and the DCOP algorithm used to solve that problem.

Some 𝑐 ∈ C are associated with a variable, whose value they are responsible for, while some other may serve other

purposes. A DCOP algorithm defines what a computation does: what type of messages it reacts to, the structure and the

content of the messages it sends, the conditions on which it selects a value for a variable (if applicable), etc. We can see

a DCOP algorithm as a set of computation definitions and it’s only when an algorithm is applied to a problem modeled

as a DCOP that we have a set of computations, as depicted on Figure 4. As a matter of fact, the same DCOP can be

instantiated as different sets of computations if solved with different algorithms.

Once these computations are defined, based on the DCOP and the algorithm, one must assign them to agents that

will operate them. We call this assignment a distribution.

Manuscript submitted to ACM

Pr
ep
rin
t

Resilient Distributed Constraint Reasoning to Autonomously Configure and Adapt IoT Environments 11

Problem
DCOP
variables,

constraints, etc.

Algorithm
computations’
definitions

Computation
graph

Computations
on agentsmodel instantiate distribute

Fig. 4. Distribution of computations for an instantiated DCOP

Definition 5 (Distribution). Given a set of agents A and a computation graph 𝐺C = ⟨C, 𝐸C⟩, a distribution is a

mapping function 𝜈 : C ↦→ A that assigns each computation to exactly one agent.

We note 𝑎𝑎 = 𝜈 (𝑐𝑖) the agent hosting the computation 𝑐𝑖 and 𝜈
−1 (𝑎𝑎) the set of computations hosted on agent 𝑎𝑎 .

Notice that this distribution 𝜈 is not necessarily the same function as the 𝛼 mapping function; while 𝛼 maps variables to

agents, 𝜈 maps computations to agents.

As we can see, the distribution is a more general concept than the mapping of variables to agents and better takes

into account distributed implementation constraints. However, when such a mapping is given –even partially– by the

problem we want to solve, it must obviously be respected. When defining a distribution, we should only distribute

computations that are representing an element (variable or factor) that is not already mapped to an agent by 𝜇.

Formally, we have seen that on some real life problems, 𝛼 is often not defined for all 𝑥 ∈ X. We denote X𝑝 the subset

of X for which we have a mapping:

𝜇 : X𝑝 ↦→ A, X𝑝 ⊆ X (10)

As a computation represents one or several variables or constraints, the set of computations can be defined as follows,

where P+ denotes the power set excluding the empty set:

C ⊂ P+ (X) ∪ P+ (F) (11)

And in order to honor the mapping given by 𝜇, 𝜈 : C ↦→ A must respect the following:

∀𝑐 ∈ C, 𝜈 (𝑐) =
{

𝛼 (𝑐) if 𝑐 ∈ X𝑝
𝑎, 𝑎 ∈ A otherwise

(12)

4.2 Computation Graph Distribution Problem

The model we introduce here targets generic computation graphs (and thus fits SECP), contrary to previous works

which simply focused on factor graphs [30]. This model integrates several features that we consider to be necessary

when deploying computations and services over IoT systems.

Let 𝐺C = ⟨C, 𝐸C⟩ be a computations graph, and let A be the set of agents which can host the computations

𝑐𝑖 ∈ C. In IoT settings, communications are heterogeneous both in performance characteristics and costs; they can

range from high speed fiber connection to cloud servers to low-power, short-range, slow wireless connection between

constrained devices in the Local Area Network. As a consequence, for a distribution to be communication-efficient it

should both generate as little communication load as possible and favor the cheapest communication links. We assume

that all agents can potentially communicate with each other and model the communication cost with a cost matrix:

route : A ×A ↦→ R+ where route(𝑎𝑚, 𝑎𝑛) is the communication cost between agents 𝑎𝑚 and 𝑎𝑛 . We note msg(𝑐𝑖 , 𝑐 𝑗)
Manuscript submitted to ACM

Pr
ep
rin
t

12 P. Rust et al.

the size of the messages between the computations 𝑐𝑖 and 𝑐 𝑗 . Using these functions, we can define the communication

cost between the computation 𝑐𝑖 hosted on agent 𝑎𝑚 and 𝑐 𝑗 hosted on 𝑎𝑛 as follows:

∀𝑐𝑖 , 𝑐 𝑗 ∈ C, ∀𝑎𝑚, 𝑎𝑛 ∈ A, coma (𝑐𝑖 , 𝑐 𝑗 , 𝑎𝑚, 𝑎𝑛) = msg(𝑐𝑖 , 𝑐 𝑗) · route(𝑎𝑚, 𝑎𝑛) (13)

This model for communication cost is quite flexible. We can, as previously, decide that there is no communication cost

when the two computations are hosted on the same agent by simply setting:

∀𝑎𝑚 ∈ A, route(𝑎𝑚, 𝑎𝑚) = 0

We could also assign a (typically small) non-null cost for intra-agent communication and even specify different inter-

agent communication costs depending on the type of agents. This approach also allows modeling systems where some

agents cannot communicate with some other agents, by simply assigning infinite costs in this cost matrix.

When hosting a computation in an IoT environment, it is often desirable to favor some agents for other reasons than

communication only. For example some computation might be very CPU intensive and we want to ensure it will be

hosted on a server with a powerful CPU. When using cloud resources, there might also be different cost for hosting a

computation on a given server, compared to another. Additionally some parts of the infrastructure might be less prone

to disconnection and some computations may be less tolerant to sporadic connection. Finally, especially in IoT, some

computation might be tightly linked to one specific physical element, as it is for example the case in our SECP model,

and can only be reasonably hosted on that element. We model this affinity, or repulsiveness, between an agent and a

computation with a function cost : A × C ↦→ R+ that assign a cost for each pair (𝑎𝑚, 𝑐 𝑗). Notice that one can easily

force a computation 𝑐j to be hosted on a specific agent 𝑎n by assigning an infinite hosting cost for all other agents:

∀𝑐𝑖 ∈ C,∀𝑎𝑚 ∈ A, cost(𝑐𝑖 , 𝑎𝑚) =
{

0 if 𝑖 = j and𝑚 = n
∞ otherwise

We also consider that an agent can only host a limited number of computations and model this with agents’ capacity

and computations’ footprint noted respectively wmax (𝑎𝑚) and mem(𝑐𝑖)
Using these definitions, we define an IoT optimal distribution of a computation graph as follows:

Definition 6 (IoT optimal distribution). An IoT optimal distribution is a distribution 𝜈 that minimizes the cost

of communication between agents and minimize the cost of hosting computations while respecting the agents’ capacity

constraints.

Definition 7 (CGDP). Given a computation graph and a set of agents, the Computation Graph Distribution Problem

(CGDP) amounts to assign each computation of the computation graph to an agent to obtain an IoT optimal distribution.

4.3 Linear Program for Optimal Distribution

We can now encode our IoT optimal distribution problem as Integer Linear Program (ILP). Let 𝑐𝑚
𝑖

be a binary variable

denoting whether the computation 𝑐𝑖 is hosted on agent 𝑎𝑚 . The binary variable 𝛼𝑚𝑛
𝑖 𝑗

denotes if both computation 𝑐𝑖 is

hosted on agent 𝑎𝑚 and 𝑐 𝑗 is hosted on 𝑎𝑛 .

∀𝑐𝑖 ∈ C, 𝑐𝑚𝑖 =

{
1, if 𝜈 (𝑐𝑖) = 𝑎𝑚

0, otherwise

∀ 𝑐𝑖 , 𝑐 𝑗 ∈ C, 𝛼𝑚𝑛
𝑖 𝑗 = 𝑐𝑚𝑖 · 𝑐

𝑛
𝑗

Our communication efficiency objective amounts to minimize the communication cost for all edges of the computa-

tions graph. Additionally, we also aim at reducing the hosting cost. By aggregating these two objectives with penalizing

Manuscript submitted to ACM

Pr
ep
rin
t

Resilient Distributed Constraint Reasoning to Autonomously Configure and Adapt IoT Environments 13

factors 𝜔com and 𝜔chost , we can define our distribution problem as a mono-objective optimization problem, modeled as

follows:

minimize
𝑐𝑚
𝑖

𝜔com ·
∑︁
(𝑖, 𝑗) ∈𝐸C

∑︁
(𝑚,𝑛) ∈A2

coma (𝑐𝑖 , 𝑐 𝑗 , 𝑎𝑚, 𝑎𝑛) · 𝛼𝑚𝑛
𝑖 𝑗 + 𝜔chost ·

∑︁
(𝑐𝑖 ,𝑎𝑚) ∈C×A

𝑐𝑚𝑖 · cost(𝑎𝑚, 𝑐𝑖) (14)

subject to

∀𝑎𝑚 ∈ A,
∑︁
𝑐𝑖 ∈C

mem(𝑐𝑖) · 𝑐𝑚𝑖 ≤ wmax (𝑎𝑚) (15)

∀𝑐𝑖 ∈ C,
∑︁

𝑎𝑚∈A
𝑐𝑚𝑖 = 1 (16)

∀𝑐𝑖 ∈ C, 𝛼𝑚𝑛
𝑖 𝑗 ≤ 𝑐𝑚𝑖 (17)

∀𝑐 𝑗 ∈ C, 𝛼𝑚𝑛
𝑖 𝑗 ≤ 𝑐𝑚𝑗 (18)

∀𝑐𝑖 , 𝑐 𝑗 ∈ C, 𝑎𝑚 ∈ A, 𝛼𝑚𝑛
𝑖 𝑗 ≥ 𝑐𝑚𝑖 + 𝑐

𝑛
𝑗 − 1 (19)

This ILP is flexible enough to accommodate a large panel of IoT scenarios; by using appropriate communication

and hosting cost matrices one can for example easily use it to reproduce the ILPs designed specifically for a DCOP

representing a SECP, both for constraint graph or a factor graph based algorithms.

Definition 8 (ILP-CGDP). We term ILP-CGDP the 0/1 integer linear program consisting of objective (14) and constraints

(15) to (19) which encodes the CGDP problem from Definition 7.

This program gives us a definition of an optimal distribution, and can be solved by classical centralized solvers (GLPK

in our experiments). However, the complexity is still very hard and it is only possible for relatively small systems. AmI

systems, and more generally IoT systems can be very large, meaning that this approach would most probably not scale.

Even though, the objective function can still be used to evaluate the quality of approximate distribution method.

4.4 Greedy Heuristic for Computation Graph Distribution

As ILP-CGDPmight be too difficult to solve for large system, we also developed a heuristic that computes an approximate

distribution. This heuristic is designed for generic computation graph and thus works for both constraint graph and

factor graph based algorithms. We start by placing the computation with the highest footprint, and select the agent with

enough remaining capacity that incurs the lowest aggregate communication and hosting costs. In case of ties, we chose

the agent with the highest remaining capacity. Of course, this greedy heuristic is sub-optimal, but allows computing a

distribution easily even for large systems. Notice however that if the system is severely constrained capacity-wise, it

may fail to find a distribution even though one exists and would be found by ILP-CGDP (provided the ILP can be solved

in a reasonable time).

Definition 9 (GH-CGDP). We term GH-CGDP the method for distributing a computation graph using that greedy

heuristic.

5 INSTALLING RESILIENCE IN DYNAMIC SMART ENVIRONMENTS

When deploying such distributed systems as SECP in open environments like the one envisioned by AmI and IoT, it

is difficult to consider that the problem, including the devices that run it, will never change during its active lifetime.

SECP is designed to model an AmI system where devices cooperate autonomously, without any centralized decision

Manuscript submitted to ACM

Pr
ep
rin
t

14 P. Rust et al.

point, to reach user-defined objectives in a home environment. All elements of SECP might undergo changes during the

nominal execution of the system. For instance, devices may be added or removed, or even their properties may change;

users may add, remove or edit scenes; the configuration of a place can be changed, thus modifying its physical model;

finally, the environment, providing sensed data will change by providing new temperature, humidity or presence values.

Most of these changes are only parameter-level modifications, but some of them may impact the distribution itself,

and thus requires system reconfiguration. Thus, we will now focus on situations where the infrastructure changes (e.g.

objects disappear), and want to install some sort of resilience against these unpredictable events. This requires notably

(i) preserving the problem definition (i.e. saving the set of computations defining the SECP) and (ii) maintaining the

solving process state (i.e. enabling removing agents while the system is currently solving the SECP). We next meet

these requirements through the notion of 𝑘-resilience, using a replica-placement model, namely Distributed Replica

Placement Method (DRPM), and a dedicated repair model, namely DCOP Model for Computation Migration (DMCM).

These models contributes to a solution method for installing resilience, we coined DRPM[DMCM].

5.1 𝑘-Resilience

We define 𝑘-resilience as the capacity for a system to repair itself and operate correctly even when up to 𝑘 agents

disappear. Thismeans that after a recovery period, all computationsmust be active on exactly one agent and communicate

one with another as specified by the computation graph 𝐺C .

Definition 10. Given a set of agents A, a set of computations C, and a distribution 𝜇, the system is 𝑘-resilient if for
any 𝐹 ⊂ A, |𝐹 | ≤ 𝑘 , a new distribution 𝜇′ : 𝑋 → A\𝐹 exists.

One pre-requisite to 𝑘-resilience is to still have access to the definition of every computation after a failure. One

approach is to keep 𝑘 replicas (copies of definitions) of each active computation on different agents. Provided that the 𝑘

replicas are placed on different agents, no matter the subset of up to 𝑘 agents that fails there will always be at least one

replica left after the failure, as classically found in distributed database systems [20]. Here, we apply these ideas except

we keep replicas of computation definitions instead of data records, which implies that computations must be stateless

or that their state must be restorable (almost stateless).

We note 𝜌 (𝑐𝑖) the set of agents that possess a replica for computation 𝑐𝑖 . In a 𝑘-resilient system, each computation

has 𝑘 replicas, which are placed on agents that do not host the active version of the computation: ∀𝑐𝑖 ∈ C, |𝜌 (𝑐𝑖) | =
𝑘 and 𝜈 (𝑐𝑖) ∉ 𝜌 (𝑐𝑖). On most systems, the placement of these replicas will be constrained by various other factors such

as agents’ capacities (memory and CPU), communication costs and problem-domain specific affinities or anti-affinities

between some computations and some agents.

Let’s note that given the capacity constraints on the agents, keeping 𝑘 replicas is not enough to warrant 𝑘-resilience

and there might be no possible distribution. The maximum 𝑘 value for which 𝑘-resilience can be achieved depends

on the system and especially on agents’ capacities. Additionally, after departure of some agent(s), the 𝑘-resilience

characteristic of the repaired system should be restored, as long as there are enough nodes available.

The problem of assigning replicas to hosts could be considered as an optimization problem, close to Definition 6.

Ideally, we should optimize replica placement for communication and hosting costs. This would ensure that when agents

fail, replicas are available on good candidate agents. However, the search space for this optimization is prohibitively

large: (i) In a 𝑘-resilient system with 𝑛 agents, there is

∑
0<𝑖≤𝑘

(𝑛
𝑖

)
potential failure scenarios as we consider case where

up to 𝑘 agents out of 𝑛 can fail simultaneously; (ii) With𝑚 computations, the number of possible replica configurations

is𝑚 ·
(𝑛
𝑘

)
, as we must select 𝑘 agents to host the replicas for each of the𝑚 computations; (iii) Then, for each of these

Manuscript submitted to ACM

Pr
ep
rin
t

Resilient Distributed Constraint Reasoning to Autonomously Configure and Adapt IoT Environments 15

replica configurations, there are𝑚𝑘 activation configurations, as exactly one of the 𝑘 replicas must be activated for each

orphaned computation. More practically, the problem of optimally distributing the 𝑘 replicas of each computation on

a given set of agents having different costs and capacities can be cast into a Quadratic Multiple Knapsack Problem

(QMKP) (see [33]), which is NP-hard. Assuming we could compute the cost of all these activation configurations, it

would still not be obvious which replica placement would be better: one could consider the one allowing the best

activation-configuration, or the one allowing, on average, good quality activation configurations or even the one giving

the best activation configurations over the set of possible failure scenarios. Obviously, defining the optimality for

replica placement is very problem dependent. Thus, given that complexity, we opt for a distributed heuristic approach,

described in the next section.

5.2 Distributed Replica Placement Method

We propose here a distributed method, namely DRPM, to determine the hosts of the 𝑘 replicas of a given computation

𝑥𝑖 . DRPM is a distributed version of iterative lengthening [28, p.90] (uniform cost search based on path costs) with

minimum path bookkeeping to find the 𝑘 best paths. The idea is to host replicas on closest neighbors with respect

to communication and hosting costs and capacity constraints, by searching in a graph induced by computations

dependencies.

It outputs a distribution of𝑘 replicas (and the path costs to their hosts) withminimum costs over a set of interconnected

agents. If it is impossible to place the 𝑘 replicas, due to capacity constraints, DRPM places as much computations as

possible and outputs the best resilience level it could achieve.

One hosting agent, called initiator, iteratively asks each of its lowest-cost neighbors, in increasing cost order, until all

replicas are placed. Candidate hosts are considered iteratively in increasing order of cost, which is composed of both

communication cost (all along the path between the original computation and its replica) and the hosting cost of the

agent hosting the replica.

This approach is based on the assumption that the initial distribution, computed using one of the methods introduced

in Section 4, is optimal or at least of good quality. As a matter of fact, if the initiator agents fails, its orphaned computation

will necessarily be migrated to one of the agents that possess its definition (i.e. that hosts one of its replicas). Therefore,

by placing replicas on agents that have minimal communication and hosting cost compared to the initiator agent, we

ensure that the computation will only be migrated to agents that favor a good quality distribution.

Let’s first define the graph specifying the communication costs, which will be developed during the search process:

Definition 11. Given a computation graph ⟨C, 𝐸C⟩ and a set of agentsA, the route–graph is the edge-weighted graph

⟨A, 𝐸,𝑤⟩ where A is the set of vertices; 𝐸 = {(𝑎𝑚, 𝑎𝑛) | ∃(𝑐𝑖 , 𝑐 𝑗) ∈ 𝐸C, and 𝜈 (𝑐𝑖) = 𝑎𝑚, 𝜈 (𝑐 𝑗) = 𝑎𝑛} is the set of edges;
𝑤 : 𝐸C → R is the weight function𝑤 (𝑎𝑚, 𝑎𝑛) = route(𝑚,𝑛).

As to take into account both communication and hosting costs in the path costs, the route–graph is extended into a

route+host–graph with extra leaf vertices attached to each agent in the neighboring graph, except the original host of

the computation, with a weighted edge representing the hosting cost of the agent, as in Figure 5.

Definition 12. Given a route–graph ⟨A, 𝐸,𝑤⟩ and a computation 𝑐𝑖 , the route+host–graph is the edge-weighted

graph ⟨A′, 𝐸′, cost⟩ where A′ = A ∪ Ã is the set of vertices where Ã = {𝑎𝑚 |𝑎𝑚 ∈ A, 𝑎𝑚 ≠ 𝜈 (𝑐𝑖)} is a set of extra

vertices (one for each element inA except the host of 𝑐𝑖); 𝐸′ = 𝐸 ∪ {(𝑎𝑚, 𝑎𝑚) |𝑎𝑚 ∈ A} is the set of edges; cost : 𝐸′ → R is

the weight function s.t. ∀𝑎𝑚, 𝑎𝑛 ∈ A, cost(𝑎𝑚, 𝑎𝑛) = 𝑤 (𝑎𝑚, 𝑎𝑛), ∀𝑎𝑚 ∈ Ã, cost(𝑎𝑚, 𝑎𝑚) = chost (𝑎𝑚, 𝑐𝑖).
Manuscript submitted to ACM

Pr
ep
rin
t

16 P. Rust et al.

𝑎1

𝑎2 𝑎3

𝑎4

�̃�2 �̃�3

�̃�4

host(𝑎2, 𝑥𝑖) = 1 host(𝑎3, 𝑥𝑖) = 1

host(𝑎4, 𝑥𝑖) = 5

route(𝑎1, 𝑎2) = 1

route(𝑎2, 𝑎3) = 3

route(𝑎2, 𝑎4) = 1

route(𝑎1, 𝑎4) = 1

Fig. 5. A sample route+host–graph with 4 agents (in gray) and a sample execution of DRPM for placing two replicas for a computation
𝑥𝑖

Example 6. Figure 5 shows a route+host–graph for a computation graph distributed over 4 agents. Notice that

agent 𝑎1 has not extra vertex 𝑎1, representing its hosting cost, as the route+host–graph on this figure is designed to

place the replicas of the computations 𝑐𝑖 hosted on 𝑎1 (which must obviously be placed on other agents). As a matter

of fact, when placing replicas, the route+host–graph is specific to an initiator agent and a computation. A different

route+host–graph is expanded by each agent 𝑎𝑘 and for each of the computation 𝑐𝑖 hosted on 𝑎𝑘 , to place the replica

for computation 𝑐𝑖 .

A route+host–graph is a search graph, expanded at runtime and explored for a particular computation 𝑐𝑖 . Each

agent operates as many instances of DRPM as computations to replicate over several route+host–graphs. For a given
route+host–graph , each agent may encapsulate two vertices (one in A and its image in Ã) and may receive messages

concerning their two vertices, and even self-send messages. Additionally, when assessing if an agent can host a replica

for 𝑐𝑖 , we ensure that it only accepts if it has enough capacity to activate any subset of size 𝑘 of its replicas, using

a predicate named can_host?. Of course this constraint is stronger than what might be actually needed, so, this

distribution is not optimal with respect to hosting cost, since one agent might reject hosting a computation whilst

it may finally have enough memory to host it. Even communication-wise, the algorithm may result in a suboptimal

distribution. However, if can_host? is provided by an oracle or if memory is not a real constraint, and replica placement

only concerns one computation, the distribution would be optimal with respect to communication and hosting costs,

since our algorithm implements an iterative lengthening search [28, p.90].

DRPM makes use of two message types, REQUEST and ANSWER, with the same fields :

• current: path of the request, as a list containing all vertices messages that have been passed through from the

initiator vertices to the one receiving the current message.

• budget, spent: remaining budget for graph exploration and budget already spent on the current path,

• known: map assigning cost to already discovered paths to unvisited vertices which bookkeeps the cheapest paths

so far,

• visited: list of already visited vertices,

• k: the remaining number of replicas to host,

• 𝑐𝑖 : computation that must be replicated.

Manuscript submitted to ACM

Pr
ep
rin
t

Resilient Distributed Constraint Reasoning to Autonomously Configure and Adapt IoT Environments 17

Algorithm 1: Handler for REQUEST
Data: current, budget, spent, known, visited, k, 𝑐𝑖

1 known← known \ current
2 if me ∉ visited then
3 visited← visited ∪{me}
4 if can_host?(𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑖) then
5 k← k − 1

6 add 𝑥𝑖 to memory

7 if k = 0 then
8 𝑎𝑝 ← predecessor of me in current

9 send ANSWER(current,
budget+cost(me, 𝑎𝑝), spent-cost(me, 𝑎𝑝),
known, visited, k, 𝑐𝑖) to 𝑎𝑝

10 return

11 𝑝 ← argmin𝑒∈{paths in known starting with current} known[𝑒]
12 if 𝑝 ≠ ∅ then
13 𝑎𝑛 ← successor of me in 𝑝

14 if cost(me, 𝑎𝑛) ≤ budget then
15 current← current + 𝑎𝑛

16 send REQUEST(current, budget-cost(me, 𝑎𝑛),
spent+cost(me, 𝑎𝑛), known, visited, k, 𝑐𝑖)
to 𝑎𝑛

17 return

18 foreach 𝑎𝑛 ∈ {𝑎𝑚 | (𝑎𝑚, me) ∈ 𝐸′, 𝑎𝑚 ∉ visited} do
19 if spent + cost(me, 𝑎𝑛) <

min𝑒∈{paths in known leading to 𝑎𝑛 } known[𝑒] then
20 known[current + 𝑎𝑛] ← spent + cost(me, 𝑎𝑛)

21 𝑎𝑝 ← predecessor of me in current

22 send ANSWER(current, budget+cost(me, 𝑎𝑝),
spent-cost(me, 𝑎𝑝), known, visited, k, 𝑐𝑖) to 𝑎𝑝

Algorithm 2: Handler for ANSWER
Data: current, budget, spent, known, visited, k, 𝑐𝑖

1 if k = 0 then
2 if me is root of current path then
3 terminate with target number of replicas placed

4 else
5 𝑎𝑝 ← predecessor of me in current

6 send ANSWER(current, budget+cost(me, 𝑎𝑝),
spent-cost(me, 𝑎𝑝), known, visited, k, 𝑐𝑖)

to 𝑎𝑝

7 else
8 𝑝 ← argmin𝑒∈{paths in known starting with current} known[𝑒]
9 if me is root of current path then
10 if 𝑝 ≠ ∅ then
11 budget← budget + known[𝑝]
12 𝑎𝑛 ← successor of me in 𝑝

13 current← current + 𝑎𝑛

14 send REQUEST(current,
budget-cost(me, 𝑎𝑛), spent+cost(me, 𝑎𝑛),
known, visited, k, 𝑐𝑖) to 𝑎𝑛

15 else
16 terminate with fewer replicas than requested

17 else
18 if 𝑝 ≠ ∅ then
19 𝑎𝑛 ← successor of me in 𝑝

20 if cost(me, 𝑎𝑛) ≤ budget then
21 current← current + 𝑎𝑛

22 send REQUEST(current,
budget-cost(me, 𝑎𝑛),
spent+cost(me, 𝑎𝑛), known, visited,
k, 𝑐𝑖) to 𝑎𝑛

23 𝑎𝑝 ← predecessor of me in current

24 send ANSWER(current, budget+cost(me, 𝑎𝑝),
spent-cost(me, 𝑎𝑝), known, visited, k, 𝑐𝑖)
to 𝑎𝑝

At the beginning, the agent requiring a computation replication initializes knownwith the paths to its direct neighbors

in the route+host–graph and sends itself a REQUEST message with a budget equals to the cheapest known path. Then,

agents handle messages according to Algorithms 1 and 2. The protocol ends when all possible replicas have been placed

(at most 𝑘).

When receiving a REQUEST message (Algorithm 1), either the agent can host a replica (lines 2-10), and thus decreases

the number of replicas to place, or forwards the request to other agents (lines 11-22). In the first case, if all replicas

have been placed, the agent answers back to its predecessor (line 9). When looking for other agents to host replicas,

if there exists a minimum cost known path starting with the currently explored path which is reachable with the

current budget, the agent forwards the request to its successor in this path (with an updated cost and budget, line 16).

If there is no such path, the agent fills out the map of known paths with new paths leading to its neighbors in the

route+host–graph, when they improve the existing known paths, and sends this back to its predecessor so that it will

explore new possibilities (line 22).

Manuscript submitted to ACM

Pr
ep
rin
t

18 P. Rust et al.

When receiving an ANSWER message (Algorithm 2), the message can either notify that all replicas have been placed

(lines 1-6) or that there exists at least one replica left to place. In the former case, if the agent is the initiator, it terminates

the algorithm, whilst having all the requested replicas placed (line 3), otherwise it forwards the answer back to its

predecessor, until it reaches the initiator (line 6). In the latter case, if the agent is the initiator it increases the budget

and sends a request to the closest neighbor (line 14) if any; if there is no such neighbor left, that means that there is no

more path to explore and that all replicas cannot be placed, therefore the agent terminates (line 16). If the agent is not

the initiator, but there exists some reachable path within current budget, it requests replication to its successor in the

best known path, as when handling REQUEST messages (line 22). Finally, if there is no such path, it simply forwards the

answer to its predecessor in the current path (line 24).

Example 7. Figure 5 represents the execution of DRPM when agent 𝑎1 places 2 replicas for computation 𝑐𝑖 . The

different colors in the edges depicts the path explored when increasing the budget.

At starts, 𝑎1 initializes the known map with the paths to 𝑎2 and 𝑎4: known = {𝑎1 → 𝑎2 : 1, 𝑎1 → 𝑎4 : 1}.
The first exploration of the graph (depicted in red) starts:

• 𝑎1 starts by sending itself a REQUEST message with a budget of 1.

• When handling this message, 𝑎1 forwards the request to 𝑎2, with a budget of 0.

• Then 𝑎2 fills out known and sends back an ANSWER to 𝑎1, as the budget does not allow forwarding the request

further.

• As it did with 𝑎2, 𝑎1 now sends a REQUEST to 𝑎4, which fills out known and sends ANSWER back.

• At this point, 𝑎1 as no other neighbor to forward the REQUEST and must increase the budget to 2, the cheapest

path in known.

The same process (in green) is repeated with a budget of 2:

• This updated budget allows expanding the path up to 𝑎2, where a first replica is placed.

• A new path to 𝑎4 is discovered but not kept in known, as it already contains a cheaper path to that node.

• Once all paths that can be reached with this budget have been explored, 𝑎1 increases the budget again.

Once again, 𝑎1 explores the graph by REQUESTS messages, this time with a budget of 5 (in blue).

• This budget allows reaching 𝑎3, and thus hosting the second replica.

• ANSWER messages are then sent back up to 𝑎1, with k=0 (all required replicas have been placed) and DRPM

terminates.

At the end of the process, replicas of 𝑐𝑖 have been placed on 𝑎2 and 𝑎3, with path costs of respectively 2 and 5. No

replica has been placed on 𝑎4, as it would incur a higher path cost of 6.

Globally, each agent is responsible for placing 𝑘 replicas for each of the active computations it currently hosts, and

thus executes DRPM once for each of its active computations. These multiple DRPM runs can be either sequentially or

concurrently executed, but their result depend on message reception order. Note however that even when running

multiple DRPM concurrently, an agent has only one message queue and handles incoming messages sequentially, which

prevents him from accepting replicas that would exceed its capacity.

Let’s now show DRPM termination and communication load properties.

Theorem 8. DRPM terminates.
Manuscript submitted to ACM

Pr
ep
rin
t

Resilient Distributed Constraint Reasoning to Autonomously Configure and Adapt IoT Environments 19

Proof. For 𝑘 = 1, since DRPM costs are additive and monotonic, and it bookkeeps paths to unvisited vertices, it

terminates like classical iterative lengthening, with the minimum cost path or empty path if not enough memory in

agents to host the computation 𝑥𝑖 . For 𝑘 > 1, DRPM attempts to place each replica sequentially, it first searches for the

best path (as for 𝑘 = 1), then operates the same process for a second best path, and so on until either (i) the 𝑘 replicas

are placed (line 3 in Algorithm 2) or (ii) there is not enough memory to host the 𝑛th replica (line 16 in Algorithm 2).

Bookkeeping ensures the same path will not be considered twice, and thus consecutive search iterations output different

paths with increasing path costs. So, in case (i), DRPM terminates when 𝑘 replicas have been placed on the 𝑘 best hosts;

and in case (ii), it terminates when 𝑘′ < 𝑘 replicas have been placed, where 𝑘′ is the maximum number of replicas that

can be placed. □

Theorem 9. DRPM requires O(𝑏𝑙) messages to terminate, with 𝑏 the branching factor of the search tree, 𝑙 = 𝑑/𝑒 number

of iterations, 𝑑 the depth of the search tree, and 0 < 𝑒 ≤ 1 the normalized step cost.

Proof. DRPM’s worst case is that the only possible hosts for replica are the last explored ones or there is no possible

host. The number of explored nodes is (𝑙)𝑏 + (𝑙 − 1)𝑏2 + . . . + (1)𝑏𝑙 which is O(𝑏𝑙). It requires twice messages (request

and answer), which is still O(𝑏𝑙). □

5.3 Migrating Computations

Once computations have been replicated using DRPM, these replicas can be used to repair a running system when an

agent fails.

In a distributed systems, one cannot rely on the availability of a centralized decision-making entity to repair the

system: such entity might not be available and selecting it from the set of available agents would introduce an extra

distributed decision making process (such as leader election) and in the case of constrained devices, a single agent

might not be powerful enough to make the decision.

Therefore, we model the repair problem itself as a DCOP, to be implemented by agents to move some computations

to restore the correct function of the system or to increase the quality of the distribution of the computations over

agents. Let’s first introduce some notations.

We note C𝑐 the set of candidate computations 𝑐𝑖 that could or must be moved when the set of agents changes. For

each of these computations, we note A𝑖
𝑐 the set of candidate agents that could host 𝑐𝑖 . The set of all candidate agents,

regardless of computations, is noted A𝑐 = ∪𝑐𝑖 ∈C𝑐𝐴𝑖
𝑐 . C𝑚𝑐 denotes the set of candidate computations that agent 𝑎𝑚

could host. Deciding which agent 𝑎𝑚 ∈ A𝑐 hosts each computation 𝑐𝑖 ∈ C𝑐 can be mapped to an optimization problem

similar to ILP-CGDP presented in Section 4.3, restricted to A𝑐 and C𝑐 : communication and hosting costs should be

minimized while honoring the capacity constraints of agents. To ensure that each candidate computation is hosted on

exactly one agent, we rewrite constraints (16) for each 𝑐𝑖 ∈ C𝑐 :∑︁
𝑎𝑚∈A𝑖

𝑐

𝑐𝑚𝑖 = 1 (20)

Similarly, capacity constraints (15) can be reformulated as:∑︁
𝑐𝑖 ∈C𝑚𝑐

w(𝑐𝑖) · 𝑐𝑚𝑖 +
∑︁

𝑐 𝑗 ∈𝜈−1 (𝑎𝑚)\𝑋𝑐

w(𝑐 𝑗) ≤ wmax (𝑎𝑚) (21)

Manuscript submitted to ACM

Pr
ep
rin
t

20 P. Rust et al.

The hosting cost objective in (14) can be similarly formulated using one soft constraint for each candidate agent 𝑎𝑚 :∑︁
𝑐𝑖 ∈C𝑚𝑐

chost (𝑎𝑚, 𝑐𝑖) · 𝑐𝑚𝑖 (22)

Finally, the communication costs in (14) are represented with a set of soft constraints. For an agent 𝑎𝑚 , the communi-

cation cost incurred by hosting a computation 𝑐𝑖 can be formulated as the sum of the cost of the cut edges (𝑐𝑖 , 𝑐 𝑗) from
the computation graph ⟨C, 𝐷⟩, (i.e. where 𝜈−1 (𝑐 𝑗) ≠ 𝑎𝑚). Let’s note 𝑁𝑖 the neighbors of 𝑐𝑖 in the computation graph.

When a neighbor 𝑐𝑛 is not a candidate computation (i.e. it might not be moved and 𝑐𝑚 ∈ 𝑁𝑖\C𝑐), the communication cost

of the corresponding edge is simply given by coma (𝑐𝑖 , 𝑐 𝑗 , 𝑎𝑚, 𝜈−1 (𝑐𝑛)). For neighbors that might be moved, the commu-

nication cost depends on the candidate agent that is chosen to host it and can be written as

∑
𝑎𝑛∈A 𝑗

𝑐
𝑐𝑛
𝑗
· com(𝑖, 𝑗,𝑚, 𝑛).

With this we can write the communication cost soft constraint for agent 𝑎𝑚 :∑︁
(𝑐𝑖 ,𝑐 𝑗) ∈C𝑚𝑐 ×𝑁𝑖\C𝑐

𝑐𝑚𝑖 · coma (𝑐𝑖 , 𝑐 𝑗 , 𝑎𝑚, 𝜈−1 (𝑐 𝑗)) +
∑︁

(𝑐𝑖 ,𝑐 𝑗) ∈C𝑚𝑐 ×𝑁𝑖∩C𝑐
𝑐𝑚𝑖 ·

∑︁
𝑎𝑛∈A 𝑗

𝑐

𝑐𝑛𝑗 · coma (𝑐𝑖 , 𝑐 𝑗 , 𝑎𝑚, 𝑎𝑛) (23)

We can now formulate the repair problem as a DCOP ⟨A,X,D, C, 𝜇⟩ where A is the set of candidate agents 𝐴𝑐 ; X
and D are respectively the set of decision variables 𝑐𝑚

𝑖
and their domain {0, 1}; C is composed of constraints (20), (21),

(22), and (23) applied for each agent 𝑎𝑚 ∈ 𝐴𝑐 . (20) and (21) result in infinite costs when violated, while (22) and (23)

directly define costs to be minimized; the mapping 𝜇 assigns each variable 𝑥𝑚
𝑖

to agent 𝑎𝑚 .

Definition 13 (DMCM). Given a set of candidate computations C𝑐 and a set of candidate agents A𝑐 , we term DMCM

the DCOP model for selecting a suitable agent for each of the computations.

Notice that this model for computations migration is not specifically designed for fixing the system after agents

failure; it simply implements the decision process for selecting a suitable agent to host some computation(s). As a

consequence, it can be used both to implement repair, which we will present in the next section, or to re-distribute

computations after some agent(s) arrival (a case that we won’t describe in this paper).

5.4 Implementing Repair using DRPM[DMCM]

Using the DCOP-based model for selecting an agent when migrating a computation, the repair phase which supports

𝑘-resilience can be implemented. When up to 𝑘 agents fail, repairing the system amounts to migrate each of the

orphaned computations to one of the agents that possess its replica.

Definition 14 (DRPM[DMCM]). We term DRPM[DMCM] the full solution method for 𝑘-resilience composed of DRPM

for replication and the DMCM model for computation migration.

Initial
Computation
distribution

Replica placement
with DRPM

(iii)
Operation

Replica activation
with DMCM

(ii)

End

Infrastructure

Computations

departure/
arrival
(i)termination

Fig. 6. DRPM[DMCM] life cycle in a glance.

Manuscript submitted to ACM

Pr
ep
rin
t

Resilient Distributed Constraint Reasoning to Autonomously Configure and Adapt IoT Environments 21

Figure 6 shows the life cycle of this approach. Assuming initial deployment (using one of the methods discussed in

Section 4) and replicas placement (using DRPM) have been performed at system bootstrap, the system will execute the

following repair cycle all along its lifetime:

(i) Detect departure/arrival, which assumes some discovery and keep alive mechanisms that automatically inform

some agents of any events in the infrastructure. So when an agent 𝑎𝑚 fails or is removed, all neighbor agents of

𝑎𝑚 in the route–graph are aware of the departure.

(ii) Replica activation for missing computations, by solving the DCOP for computation migration, as to relocate

computations that were hosted on the set of departed agents A𝑑 to other agents. The candidate computations C𝑐
are the orphaned computations hosted on these agents:

C𝑐 = ∪𝑎𝑚∈A𝑑
𝜈 (𝑎𝑚)

To avoid extra delay and communication during the repair phase these orphaned computations should be assigned

to agents that already have the necessary information to run an active version of the computation. This means

that the set of candidate agents A𝑐 for an orphaned computation 𝑐𝑖 maps the set of still available agents hosting a

replica for this computation:

A𝑖
𝑐 = 𝜌 (𝑐𝑖)\A𝑑

In a 𝑘-resilient system, as long as |A𝑑 | ≤ 𝑘 , we are sure that there will always be at least one agent in A𝑖
𝑐 . Thus,

step ii yields an assignment of each of the orphaned computations to one of the remaining agents hosting its

replica.

(iii) Replica placement for missing computations using DRPM, and continue nominal operation, which maintains a

good resilience level in the system by repairing the replica distribution using DRPM on a smaller problem, since

many replicas are already placed.

5.5 Solving DMCM using a DCOP Algorithm

Now that the repair problem has been expressed as a DCOP, we discuss its resolution using a DCOP solution method.

Many solution methods for DCOPs exist, several of which have been presented in Section 2.2. In brief, using these

message passing protocols, agents coordinate to assign values to their variables. Each of these solution methods has

specific characteristics (they might be complete or not, synchronous or asynchronous, etc.) and makes some assumptions

on the environment and the problem (perfect message delivery, hard and/or soft constraints, etc.). Therefore, when

solving a DCOP, it is very important to select a DCOP algorithm that matches the characteristics of the problem and its

environment. In the case of DMCM, we can identify the following key characteristics to guide our choice of suitable

solution methods:

(a) The problem must be solved by constrained devices.

(b) A solution must be found as quickly as possible, as the system will only get back to nominal operation once all

orphaned computations have been successfully migrated.

(c) Our model contains hard constraints, to ensure all orphaned computation are migrated and that agent’s capacity is

honored, and soft constraints, for hosting and communication costs.

(d) A suboptimal solution is acceptable, as long as all hard constraints are satisfied. Indeed, we can reasonably sacrifice

some optimality on hosting and communication cost, if orphaned computations are migrated to agents that have

enough capacity to host them. Additionally, violating a hard constraint could also mean loosing an orphaned

Manuscript submitted to ACM

Pr
ep
rin
t

22 P. Rust et al.

computation, or activating several replicas for the same computation. In both cases, the system will be in an

inconsistent state.

(e) As DMCM is designed to repair a distribution, the solution method used to solve it must not bring about a distribution

problem itself, otherwise we would have a chicken and egg situation . . .

Characteristics (a), (b) and (c) compel us to select a lightweight suboptimal algorithm. Local search algorithms for

instance, are fast and require very little computation on each agent. Characteristic (e) implies that we must use an

algorithm for which the assignment of computations to agents is fully defined for the DMCM problem. As this model

contains only binary variables 𝑐𝑚
𝑖
, where 𝑚 maps to agent 𝑎𝑚 , we can easily map each variable to an agent. As a

consequence, by using constraint graph-based algorithms, which only define computations for variables, we avoid

facing a distribution problem when deploying the DCOP used to solve DMCM. Characteristic (c) is more difficult

to satisfy. As a matter of fact, few DCOP algorithms have been designed specifically to take into account a mix of

hard and soft constraints and many iterative algorithms tend to break hard constraints when optimizing for soft

constraints. A monotonic algorithm, like MGM [18] is particularly well suited for this situation; as the cost of the

solution monotonically decreases, once the hard constraints (modeled with infinite costs) have been satisfied they will

not be broken while optimizing the soft constraints. In our case, decisions require coordination between two agents: to

move a computation from agent 𝑎𝑚 to agent 𝑎𝑝 , the binary variable 𝑐𝑚
𝑖

must take 0 as a value, while simultaneously, 𝑐𝑝
𝑖

must switch from 0 to 1. This need for simultaneous changes justifies the use of MGM-2 (Maximum Gain Message with

2-coordination) [18].

By applying MGM-2 to DRPM[DMCM] we obtain a repair method that we coin DRPM[MGM-2]. Of course, we could

use any other DCOP algorithm that matches these characteristics.

For example algorithms such as BrC-DPOP [6] and CeC-DPOP [27], which should handle well our mix of soft and

hard constraints, could also be good candidates for solving DMCM.

6 EXPERIMENTAL EVALUATION

Now, we experimentally evaluate the distribution methods, the replica placement method and the repair method we

contributed in the previous section, on randomly generated SECP instances.

6.1 Experimental Setup

We consider a realistic smart home with actuators (light bulbs), physical models and user-defined rules. Notice that,

for simplicity sake, we only consider light control in our experiments, even though our model could be applied to

other parameters in a house. As presented previously, each actuator is represented by a variable 𝑥𝑖 associated with

an efficiency factor 𝑒𝑖 , which defines a cost function as a linear function of the emitted luminosity. Each physical

dependency model is represented by a pair (𝜑 𝑗 , 𝑦 𝑗), where 𝜑 𝑗 is defined as weighted sums (weights are randomly

selected) of the luminosity levels emitted by the light bulbs in its scope and yield the theoretical resulting luminosity in

a given place as an indirect scene action variable 𝑦 𝑗 . Finally, each rules 𝑟𝑘 assigns target values to one or several scene

action variables (actuators and models). Variables, models and rules are randomly connected and we only consider

active rules, which have an actual influence on the problem. We use 𝜔𝑐 = 1 and 𝜔𝑢 = 10 as weights when aggregating

the two objectives (respectively for energy cost and rules utility). We generate larger instances by increasing the

number of lights, physical models and rules in the system, which represents progressively larger houses. Each physical

model is randomly connected to 1 to 4 lights and each rule is randomly connected to 1 to 3 models or lights. The

Manuscript submitted to ACM

Pr
ep
rin
t

Resilient Distributed Constraint Reasoning to Autonomously Configure and Adapt IoT Environments 23

smallest instances have 10 lights, 3 models and 2 rules, and the count of each of these elements is linearly increased, by

increments of 10 lights, up to 90 lights, 27 models and 18 rules. Communication costs are uniform between agents (1)

and hosting costs are identical for all computations (100), except light computations (0) to be hosted by smart light

bulbs themselves. Agents’ capacities are set to 1000 for instances smaller than 60, and to 1500 for larger instances.

We use the python library pyDCOP for generating the problem instances, the computation graph and the agents,

and for computing the distributions [31]. For solving the linear program ILP-CGDP is based on, pyDCOP relies on the

GLPK
1
solver.

All the generators and algorithms are provided in the pyDCOP
2
library [31].

6.2 Evaluating SECP Resolution in Static Settings

First, we solve 100 static SECP instances for each problem size, with a 120-seconds timeout, using A-DSA (variant B,

𝑝 = 0.7) [9], MGM and MGM-2 [18], a customized Damped A-MaxSum, and DPOP [23], a complete inference algorithm

as a benchmark. Our customized variant of A-MaxSum (based on Damped MaxSum, with 0.2 damping factor on variables

and factors [2]) is designed to improve its behavior after a repair operation: once orphaned computations have been

migrated and restarted on an active agent, the accumulated cost table of their neighbors is flushed. Additionally, the

standard mechanism used to avoid sending duplicate messages (classically used to detect termination when messages

converge [5]) is inhibited and belief propagation is restarted. Notice that this can be implemented in a distributed

manner with a simple token passing approach.

Figure 7b shows the cost of the solutions. DPOP always produces the lowest cost. MGM-2 and A-MaxSum provide

very good quality results, while DSA and MGM display lower, similar quality. However, DPOP actually fails to solve

numerous instances within the allocated time budget (up to 43% for problems with 90 light bulbs); for these cases

we have used the time budget when computing the average execution time, in Figure 7a. DPOP is obviously much

slower than the approximate algorithms and does not scale with increasing problem size. Overall, both A-DSA and

A-MaxSum are good candidates for solving SECP, but at different expenses: speed for A-MaxSum and solution quality

for A-DSA. Additionally, they both exhibit very interesting characteristics for our purpose: they are asynchronous,

robuts to message loss and almost-stateless. Indeed, an A-DSA computation actually requires a single message round to

rebuild its state, as it only keeps track of the values of its neighbors. A-MaxSum requires a few more rounds, but our

customization makes this process faster. These features motivate our choice of using A-DSA and A-MaxSum in the next

experiments.

6.3 Evaluating Generalized Distribution on SECP

In this experiment, we use our optimal and heuristic distribution methods on DCOPs representing SECP instances. 20

instances are generated for each problem size and distributed using GH-CGDP and ILP-CGDP (with a 30 seconds time

limit to represent an acceptable installation time for an user), when using a constraint graph representation and a factor

graph representation.

Figure 8 shows the time required to compute the distribution when using constraint graph (8a) and factor graph (8b)

representations of the DCOP. We only plot optimal distribution times for problem sizes for which all instances could be

distributed. Distribution is harder to compute when using a computation graph based on a factor graph representation,

since more computations are required to operate the very same problem. The optimal distribution is restricted to

1
https://www.gnu.org/software/glpk/

2
https://github.com/Orange-OpenSource/pyDcop

Manuscript submitted to ACM

https://www.gnu.org/software/glpk/
https://github.com/Orange-OpenSource/pyDcop

Pr
ep
rin
t

24 P. Rust et al.

10 20 30 40 50 60 70 80 90
Lights count

0

10

20

30

40

50
Av

er
ag

e
ex

ec
ut

io
n

tim
e

(s
) amaxsum

dpop
dsa
mgm
mgm2

(a) Duration

10 20 30 40 50 60 70 80 90
Lights count

0
50

100
150
200
250
300
350
400

Av
er

ag
e

so
lu

tio
n

co
st

(b) Cost

Fig. 7. Execution time and solution cost when solving static SECP instances with DCOP algorithms

10 20 30 40 50 60 70 80 90
Lights count

10−3

10−2

10−1

100

101

102

Av
er

ag
e

tim
e

(s
)

(a) Constraint graph representation

10 20 30 40 50 60 70 80 90
Lights count

10−2

10−1

100

101

102

Av
er

ag
e

tim
e

(s
)

ILP-CGDP
GH-CGDP

(b) Factor graph representation

Fig. 8. Time for distributing SECP instances with optimal and heuristic methods

10 20 30 40 50 60 70 80 90
Lights count

0

1000

2000

3000

4000

5000

Av
er

ag
e

di
st

rib
ut

io
n

co
st

ILP-CGDP aggregated cost
communication (ILP-CGDP)
hosting (ILP-CGDP)
GH-CGDP aggregated cost
communication (GH-CGDP)
hosting (GH-CGDP)

(a) Constraint graph representation

10 20 30 40 50 60 70 80 90
Lights count

0

2000

4000

6000

8000

10000

12000

14000

Av
er

ag
e

di
st

rib
ut

io
n

co
st

(b) Factor graph representation

Fig. 9. Cost of distributions for SECP instances

relatively small instances while the heuristic distribution can be used on very large instances: it can easily deal with

SECP with 90 lights and could distribute much larger instances.

Figure 9a and 9b depict the distribution costs for our SECP instances when using the heuristic and optimal methods,

respectively with a constraint graph and factor graph representation. As the distribution cost is made of communication

and hosting costs (see Definition 8), we also plot the communication and hosting components. Notice that we include

in this figure the optimal cost of distribution for all problems size for which at least some instances could be distributed.

Manuscript submitted to ACM

Pr
ep
rin
t

Resilient Distributed Constraint Reasoning to Autonomously Configure and Adapt IoT Environments 25

10 20 30 40 50 60 70 80 90
Lights count

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Ti
m

e
(s

)

Constraint graph based algorithm (DSA)
Factor graph based algorithm (MaxSum)

(a) Computation time

10 20 30 40 50 60 70 80 90
Lights count

0

1

2

3

4

C
om

m
un

ic
at

io
n

lo
ad

1e6

(b) Communication load (in bytes)

Fig. 10. Time and communication load to replicate computations for SECP instances

As previously, we can see that GH-CGDP produces very good quality distributions while requiring several orders of

magnitude less time.

6.4 Evaluation of DRPM

We evaluate now DRPM, the replica placement method. We derive two computation graphs for each problem instance,

one for DSA and one for A-MaxSum, which are respectively a constraint graph and a factor graph based algorithm.

The multi-agent infrastructure used for these SECP problems is made of one agent for each light, and computations

representing a light is assigned to the corresponding agent. The initial distribution is computed using GH-CGDP.

Figure 10a represents the time required to achieve 3-resilience on our SECP instances. As expected, replication

is harder for A-MaxSum, as it requires more computations for the same problem. In any case, we argue that these

replication times are perfectly reasonable for real-like system as this operation only needs to be run once when starting

the system: during the nominal execution of the system, full replication is never needed and we can simply repair an

existing replication if some agent fails or leave the system. Figure 10b shows the total communication loads induced by

DRPM, which evolves in same way than computation time.

6.5 Evaluation of the DMCM Repair Method

In these experiments, we evaluate DMCM, our DCOP-based repair method, on running SECP. As DMCM models the

repair process as a DCOP, we implement it using two different DCOP algorithms and compare their efficiency on this

task. The algorithm used for repairing the SECP distribution is MGM-2 (𝑞 = 0.5).

One scenario of 5 events is generated for each instance; at each event 2 random agents (i.e. light device) are removed.

The initial distribution of the computation graphs derived from these problems is computed with GH-CGDP.

The 100 SECP instances are solved with our customized A-MaxSum variant and A-DSA, as motivated in Section 6.2.

During the solving process, we inject the scenario’s events in the system every 30 seconds, each time removing 2

agents, and repair the system using DRPM[MGM-2]. After each repair we re-run DRPM, for migrated computations and

computations whose replica were hosted on removed agents. This ensures that each computation in the system still has

𝑘 replica. Our mechanism amounts to using a DCOP (solved with MGM-2) to repair and restore nominal operation on

another DCOP (solved with A-DSA or A-MaxSum), which represents the initial dynamic problem we want to solve (in

this case, SECP). Additionally, we also solve the same problems without any disturbance, in order to assess the impact

of our repair method on the quality of the solution returned by A-DSA and A-MaxSum.

Manuscript submitted to ACM

Pr
ep
rin
t

26 P. Rust et al.

0

100

200

300

C
os

ts

0 30 60 90 120 150
Time (s)

0.0

2.5

5.0

7.5

C
on

st
ra

in
tv

io
la

tio
ns

(a) A-DSA

0

100

200

300

C
os

ts

0 30 60 90 120 150
Time (s)

0.0

2.5

5.0

7.5

C
on

st
ra

in
tv

io
la

tio
ns

(b) A-MaxSum

Fig. 11. Cost and hard constraints violations of operating A-DSA and A-MaxSum to solve SECP, repaired with DRPM[MGM-2] (blue:
with perturbations, red: without perturbation)

Figures 11a and 11b show the cost of the solutions found by A-DSA and A-MaxSum over time. As the SECP model

contains both soft and hard constraints, we plot separately the number of violated hard constraints (bottom) and the

sum of costs of the soft constraints (top). The results for each of the 100 instances are displayed in transparent grey

and the average cost across all instances is plotted in blue. The average cost of the same instances solved without

disturbance is plotted in red, but is barely visible as the average repaired cost is extremely similar. We can see that both

A-DSA and A-MaxSum behave remarkably after a repair: during a short period after the repair the solution cost and the

number of violated hard constraints increase, but quickly get back to the quality level achieved before the agents were

removed. Overall, we can say that DRPM[MGM-2] is well suited for repairing running SECP and that the quality of the

solution produced over time is barely affected by the repair operations. However, when comparing results produced by

A-DSA and A-MaxSum, we can observe that A-DSA yields higher costs. After a repair, A-MaxSum generally breaks

more hard constraints than A-DSA but we argue that it is not really problematic as it always manage to get back to the

level it had before the disturbance. Notice however that the average number of hard constraints violations is not equal

to zero. Indeed, there are some instances where A-MaxSum struggles with hard constraints.

6.6 Physical Demonstrator

pyDCOP and the techniques we developed in this paper have also been used to build a physical demonstrator. This

demonstration illustrates the 𝑘-resilient distributed decision making process in an IoT system. Our scenario is based on

a classical distributed weighted graph coloring problem (to be more illustrative), to which many real problems can be

mapped. Each variable in the system maps to a vertex in the graph and can take one color as a value. Edges of the graph

map to binary constraints, assigning a cost for each combination of colors taken by its associated variables/vertices.

The goal is to find a assignment of colors that minimize the sum of these costs. Several graph structures can be used

when generating instances of this problem. To model an IoT infrastructure, we use the Barabasi-Albert method [1],

which produces graphs that follow a power-law, known to adequately model this kind of systems [36]. Each agent in

Manuscript submitted to ACM

Pr
ep
rin
t

Resilient Distributed Constraint Reasoning to Autonomously Configure and Adapt IoT Environments 27

Fig. 12. A physical demonstrator for resilient system developed using pyDCOP on Raspberry Pis

the system is responsible for a subset of the variables and uses a DCOP algorithm to coordinate assignment of color to

its variables.

The demonstrator (see Figure 12) is made of a 3 × 3 grid of Rapsberry Pis, each fitted with a small touch-screen. Each

such device runs one pyDCOP agent and displays a GUI presenting the current state of this agent. Agents communicate

via WebSocket. A central screen (an internet browser on a TV or computer screen) gives an overall view of the system

and the current runtime metrics. During the demonstration, we dynamically remove random agents from the system.

Remaining agents coordinate autonomously the repair process, which can be observed on their GUI. The self-repair,

which implements DRPM[DMCM] is totally decentralized. A video presenting this demonstration is available online
3
.

6.7 Summary and Discussion

This implementation of the full stack of resilience and adaptation mechanisms showed their real applicability. Indeed,

while considering environments with several dozen of devices and models, the initial distribution of computations

with the greedy heuristic has a good quality and obtained very quickly. Moreover, the replica placement with DRPM is

performed in less than 20 seconds for the largest instances. This results in less than one minute setup time. In operation,

repair and replication techniques are thus good candidates for in-house deployments, without too much time for users

to wait for effective performance. Moreover, the execution of the DCOP algorithms we investigate (A-MaxSum and

A-DSA) is not much impacted by our repair method. Repairing a distribution requires less than 10 seconds in the worst

cases. The systems continue providing solutions, whilst missing agents, which demonstrates the resilience of these

systems. Using problem encoding requiring less computations (choosing constraint graphs instead of factor graphs) is

faster. The complexity of the repair process, encoded as a DCOP itself, strongly depends on the number of computations

hosted on each agent: when using a factor graph many more computations are required while the number of agents

does not change, meaning that on average substantially more computations must be migrated when an agent fails.

Moreover, the operation of A-MaxSum is much more impacted by agent removals and repairing than A-DSA, which is

very robust to such dynamics. Thus, A-DSA seems a very relevant candidate for implementing SECP in a real dynamic

setting.

3
https://www.dropbox.com/s/ozb0scwskkxqx6p/demoPyDCOP.mp4

Manuscript submitted to ACM

https://www.dropbox.com/s/ozb0scwskkxqx6p/demoPyDCOP.mp4?dl=0
https://www.dropbox.com/s/ozb0scwskkxqx6p/demoPyDCOP.mp4

Pr
ep
rin
t

28 P. Rust et al.

7 RELATEDWORKS

We now review of some related works focusing on distributed constraint processing for IoT-based AmI, distribution of

decisions and computations, and resilience in dynamic settings.

7.1 Constraint Reasoning in Ambient Intelligence

In [4], Degeler and Lazovik use dynamic constraint reasoning for smart environment management. The desired behavior

of the home is specified using logical rules. The problem is then encoded as a Dynamic Constraints Satisfaction Problem

(DynCSP), where actuators are represented as controllable variables, in order to take into account the changes in the

environment context. Kaldeli et al. argue in [14] that intelligent behavior in a SHE requires complex functionalities

that involve several dynamically selected services provided by independent devices. They thus propose to combine a

Service Oriented Architecture (SOA) design with automatic and dynamic service composition. The service composition

is implemented using a domain-independent CSP-based planner. The planner reasons upon this model and generates a

sequence of actions that must be performed. In [34], Song et al. design a self-adaptive system that takes user preferences

into account and applies it to a SHE scenario. The set of adaptation policies is modeled as a CSP, which allows detecting

conflicting goals and finding the best configuration that satisfies as many goals as possible. Parra et al. use a CSP to

model a dynamic features selection in a software product line and optimize this configuration process [21]. This work is

applied to a SHE scenario where an adaptive application must self-adapt to the type of devices and connectivity options

currently available in the house.

However, the four aforementioned approaches rely on a central decision node. Some research has been done on

applying the DCOP framework to settings that can be considered to be part of IoT and Ubiquitous Computing: sensor

networks, radio frequency allocation, traffic light coordination, etc. However, to the best of our knowledge, few past

works have focused on the use of the DCOP framework for AmI and SHE settings. In [22], the integration of complex

services for AmI is mapped to a Multi-Agent Coordination (MAC) problem, then tackled using the DCOP framework. In

their model, each application in the home offers one or several services and is represented by an agent. The resulting

DCOP is continuously reasoned upon by the agents and yields a solution where output variables map to the desired

behavior of the home. Their implementation is based on ADOPT-N. Fioretto et al. propose in [7] to use a DCOP approach

for demand-side management in electric smart grid, based on the Smart Home Device Scheduling (SHDS) problem. This

problem is modeled as a distributed scheduling problem, which is mapped to a DCOP that includes both soft constraints,

for user preferences and energy consumption, and hard constraints, for temporal goals. Their implementation uses

SH-MGM, a custom MGM-based algorithm. As a complement to the SHDS problem, Kluegel, Iqbal, Fioretto, Yeoh, and

Pontelli propose in [16] a set of physical models for smart home devices and a data set of problem instances that can be

used to benchmark solution methods.

7.2 Distributing Decisions

We argued that the commonly used assumption on DCOP distribution does not hold when working on real world

problems and that it is necessary to consider the question of the distribution of decisions over a set of agents. While

few works currently exists in this domain, we consider it to be an important part of using DCOP approaches in

physical distributed environments. When devising this allocation, there are many elements that we can take into

considerations. As a matter of fact, the placement of the computations on agents can have an important impact on

the performance characteristics of the global system. Some distributions may improve response time, some others

Manuscript submitted to ACM

Pr
ep
rin
t

Resilient Distributed Constraint Reasoning to Autonomously Configure and Adapt IoT Environments 29

may favor communication load between agents and some others may be better for other criteria like QoS or running

cost. While distribution is seldom studied in the DCOP community, some recent works have started tackling it. We

first proposed a distribution method dedicated to factor graphs [30], which aims at minimizing communication costs

and hosting costs, as the methods presented in Section 4, which are more generic and can be applied to any graphical

model and DCOP solver. Besides, in [15], Khan et al. analyze the placement of constraint graph nodes on agents from a

performance point of view; their objective is to find a placement that minimizes the completion time of the DCOP. Like

us, they argue that in many problems there are multiple possible mappings of nodes to agents. However, they only

consider variable nodes and do not define a more general concept of distribution, which takes into account other types

of nodes (factors, several variables, etc.).

7.3 Resilience of Decision Process in Dynamic Settings

One extension of the DCOP framework, namely Dynamic DCOP (Dyn-DCOP), deals with problems whose definition

changes during execution, as is it the case in the SECP model. The classical approach, described as reactive [17, 24, 25, 37],

is directly based on the model of a sequence of static DCOPs, where future DCOPs are entirely unknown. Each static

DCOP is simply solved sequentially; any time the problem changes, the new DCOP is solved and the previous solution

replaced. The advantage of this approach is that it can theoretically be used with any DCOP algorithm. One drawback

of this approach is that this is only applicable if the rate of change is slow enough, compared to the time required to

solve one of the DCOPs in the sequence, to terminate solving the problem before a new change occurs. Otherwise, the

system would keep solving outdated problems and might even never produce a solution, as it restarts solving a new

problem even though no solution as yet been found for the previous one. To avoid this issue, researchers have proposed

algorithms that reuse information from previous DCOP to speed-up the search of the current one. A variant of this

approach, also reactive, is to use DCOP algorithms that can dynamically adapt to the changes and keep working on the

updated problem without restarting from scratch. Some works also consider the costs of switching from one solution to

another and take this cost into account when selecting a solution for the next DCOP in the sequence. The target here is

solution stability, which considers the change of solution in these dynamic systems and tries to minimize its effects.

Another approach, called proactive [10, 11, 19], is to consider that future DCOPs in the sequence are known in

advance or that future potential changes may be at least partially anticipated. In that case, the objective is to look

for solutions that are robust to these changes, that is to say solutions that require little or no changes despite the

modification of the problem. Unfortunately, current solution methods for this model are either offline or too expensive

to be used with anything but a very limited number of agents. In our case, we argue that we cannot predict future

changes in the system and we consider that we do not really need the robustness of the solution that the self-stabilizing

approach is aiming for. This characteristic is interesting when switching from one solution to another one induces a

large cost to the system, as it can be the case for vehicle routing or meeting scheduling. In these cases, the solution

stability is indeed primordial, and it is of paramount importance to take into account the cost of transitioning to a new

solution versus the benefit provided by this new solution. Therefore, it is potentially more interesting to trade some

optimality on the solution for a smaller amount of adaptation when changes occur.

Finally, the notion of 𝑘-resilience, where 𝑘 replicas are placed on different agents, is inspired by techniques from

distributed database systems [20], except that here we save computations definitions instead of data.

Manuscript submitted to ACM

Pr
ep
rin
t

30 P. Rust et al.

8 CONCLUSION

We proposed a full process to implement self-configuration in IoT-based smart environment settings. We modeled

goal-oriented smart environment scenarios as DCOPs, and provided several methods to distribute and solve it in dynamic

setup. We installed decentralized decision-making and coordination of smart things and services by operating DCOP

algorithms. To equip this decision process with resilience to environment and infrastructure dynamics, two distributed

algorithms have been devised: (i) a replica placement protocol (DRPM) and (ii) a repair protocol (DRPM[DMCM])

relying on replicas placed by DRPM and based itself on DCOP solution method MGM-2. We thus provide self-adaptation

to DCOP solvers by using another DCOP-based repair process.

Our contributions have been evaluated experimentally by operating A-MaxSum and A-DSA on dynamic systems

where agents disappear during the optimization process. On the different settings we investigated, on both synthetic

scenarios and real IoT-based infrastructure build from a network of Raspberry Pis, our repair method DRPM[MGM-2]

does not impact the SECP solving process, whilst missing some agents, which demonstrates the resilience of these

systems. On our experiments, A-MaxSum operation is much more impacted by agent removals and repairing than

A-DSA which is very robust to such dynamics.

This paper raised promising results with respect to resilience in operating distributed optimization processes. We

only focused on the worst scenario with agent removals only. We will investigate less stressing scenarios, coming from

a broader scope of graph-based computations, like high-performance computing or virtual network functions, where

agents may be added to replace disappeared ones. Moreover, we proposed to use MGM-2 as the core repair algorithm,

resulting in DRPM[MGM-2] method, but, other lightweight DCOP solution methods might be considered or even

designed to the particular case of constraint graph or factor graph repair for instance DCOP algorithms better handling

problems with both soft and hard constraints [6, 27]. Finally, approaches for preserving information disclosure while

ensuring system resilience, and the resulting trade-off between resilience and privacy will be investigated in future

research.

REFERENCES
[1] A.-L. Barabási and R. Albert. 1999. Emergence of Scaling in Random Networks. Science 286, 5439 (1999), 509–512.
[2] L. Cohen and R. Zivan. 2017. Max-sum Revisited: The Real Power of Damping. In Autonomous Agents and Multiagent Systems. Springer International

Publishing, 111–124.

[3] R. Dechter. 2003. Constraint Processing. Morgan Kaufmann.

[4] V. Degeler and A. Lazovik. 2013-11. Dynamic Constraint Reasoning in Smart Environments. In 2013 IEEE 25th International Conference on Tools with
Artificial Intelligence. 167–174.

[5] A. Farinelli, A. Rogers, A. Petcu, and N. R. Jennings. 2008. Decentralised Coordination of Low-Power Embedded Devices Using the Max-Sum

Algorithm. In Proceedings of the International Conference on Autonomous Agents and Multiagent Systems. pp. 639–646.
[6] F. Fioretto, T. Le, W. Yeoh, E. Pontelli, and T. C. Son. 2014. Improving DPOP with Branch Consistency for Solving Distributed Constraint Optimization

Problems. In Principles and Practice of Constraint Programming (Cham). 307–323.

[7] F. Fioretto, E. Pontelli, and W. Yeoh. 2017. A Multiagent System Approach to Scheduling Devices in Smart Homes. In Proceedings of the International
Workshop on Artificial Intelligence for Smart Grids and Smart Buildings. 7 pages pages.

[8] F. Fioretto, E. Pontelli, and W. Yeoh. 2018-03-29. Distributed Constraint Optimization Problems and Applications: A Survey. Journal of Artificial
Intelligence Research 61 (2018-03-29), 623–698. arXiv:1602.06347

[9] S. Fitzpatrick and L. Meertens. 2003. Distributed Coordination through Anarchic Optimization. In Distributed Sensor Networks. Springer, 257–295.
[10] K. D. Hoang, F. Fioretto, P. Hou, Ma. Yokoo, W. Yeoh, and R. Zivan. 2016. Proactive Dynamic Distributed Constraint Optimization. In Proceedings of

the 2016 International Conference on Autonomous Agents & Multiagent Systems. 597–605.
[11] K. D. Hoang, P. Hou, F. Fioretto, W. Yeoh, R. Zivan, and M. Yokoo. 2017. Infinite-Horizon Proactive Dynamic DCOPs. In Proceedings of the 16th

Conference on Autonomous Agents and MultiAgent Systems (São Paulo, Brazil) (AAMAS ’17). 212–220.
[12] IETF. 2013. DNS-SD.

[13] IETF. 2013. mDNS.

Manuscript submitted to ACM

https://arxiv.org/abs/1602.06347

Pr
ep
rin
t

Resilient Distributed Constraint Reasoning to Autonomously Configure and Adapt IoT Environments 31

[14] E. Kaldeli, E. U. Warriach, A. Lazovik, and M. Aiello. 2013-05-01. Coordinating the Web of Services for a Smart Home. ACM Transactions on the Web
7, 2 (2013-05-01), 1–40.

[15] M. Khan, L. Tran-Thanh, W. Yeoh, and N. R. Jennings. 2018. A Near-Optimal Node-to-Agent Mapping Heuristic for GDL-Based DCOP Algorithms in

Multi-Agent Systems. In Roceedings of the International Conference on Autonomous Agents and Multiagent Systems. 1613–1621.
[16] W. Kluegel, M. A. Iqbal, F. Fioretto, W. Yeoh, and E. Pontelli. 2017. A Realistic Dataset for the Smart Home Device Scheduling Problem for DCOPs. In

International Workshop on Optimisation in Multi-Agent Systems (OptMAS@AAMAS 2017), Vol. 10643. 125–142.
[17] R. N. Lass, E. Sultanik, and W. C. Regli. 2008. Dynamic Distributed Constraint Reasoning.. In AAAI. 1466–1469.
[18] R. T. Maheswaran, J. P. Pearce, and M. Tambe. 2004. Distributed Algorithms for DCOP: A Graphical-Game-Based Approach.. In ISCA PDCS. 432–439.
[19] Y. Naveh, R. Zivan, and W. Yeoh. 2017. Resilient Distributed Constraint Optimization Problems. In International Workshop on Optimisation in

Multi-Agent Systems (OptMAS@AAMAS 2017). 8 pages pages.
[20] M. T. Özsu and P. Valduriez. 2011. Data Replication. In Principles of Distributed Database Systems, Third Edition. 459–495.
[21] C. Parra, D. Romero, S. Mosser, R. Rouvoy, L. Duchien, and L. Seinturier. 2012. Using Constraint-Based Optimization and Variability to Support

Continuous Self-Adaptation. In Proceedings of the 27th Annual ACM Symposium on Applied Computing - SAC ’12. 486.
[22] F. Pecora and A. Cesta. 2007-12-12. DCOP for Smart Homes: A Case Study. Computational Intelligence 23, 4 (2007-12-12), 395–419.
[23] A. Petcu and B. Faltings. 2004. A Distributed, Complete Method for Multi-Agent Constraint Optimization. In CP 2004 - Fifth International Workshop

on Distributed Constraint Reasoning (DCR2004). 15.
[24] A. Petcu and B. Faltings. 2005. Superstabilizing, Fault-Containing Distributed Combinatorial Optimization. In Proceedings of the National Conference

on Artificial Intelligence, Vol. 20. 449.
[25] A. Petcu and B. Faltings. 2007-11. Optimal Solution Stability in Dynamic, Distributed Constraint Optimization. In 2007 IEEE/WIC/ACM International

Conference on Intelligent Agent Technology (IAT’07). 321–327.
[26] B. Rachmut, R. Zivan, andW. Yeoh. 2021. Latency-Aware Local Search for Distributed Constraint Optimization. In Proceedings of the 20th International

Conference on Autonomous Agents and MultiAgent Systems. 1019–1027.
[27] M. Rashik, M. Rahman, M. Khan, M. Mamun-or Rashid, L. Tran-Thanh, and N. R. Jennings. 2021. Speeding up distributed pseudo-tree optimization

procedures with cross edge consistency to solve DCOPs. 51 (2021), 1733–1746.

[28] S. J. Russell and P. Norvig. 2016. Artificial Intelligence: A Modern Approach (third edition, global edition ed.).

[29] P. Rust, G. Picard, and F. Ramparany. 2016. Using Message-passing DCOP Algorithms to Solve Energy-efficient Smart Environment Configuration

Problems. In Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16), S. Kambhampati (Ed.). AAAI Press,

468–474.

[30] P. Rust, G. Picard, and F. Ramparany. 2017. On the Deployment of Factor Graph Elements to Operate Max-Sum in Dynamic Ambient Environments.

In Autonomous Agents and Multiagent Systems – AAMAS 2017 Workshops, Best Papers, Sao Paulo, Brazil, May 8-12, 2017, Revised Selected Papers
(Lecture Notes in Artificial Intelligence (LNAI), Vol. 10642). Springer, 116–137.

[31] P. Rust, G. Picard, and F. Ramparany. 2019. pyDCOP, a DCOP library for IoT and dynamic systems. In International Workshop on Optimisation in
Multi-Agent Systems (OptMAS@AAMAS 2019).

[32] P. Rust, G. Picard, and F. Ramparany. 2020. Resilient Distributed Constraint Optimization in Physical Multi-Agent Systems. In European Conference
on Artificial Intelligence (ECAI). 195–202.

[33] T. Saraç and A. Sipahioglu. 2014-03. Generalized Quadratic Multiple Knapsack Problem and Two Solution Approaches. Computers & Operations
Research 43 (2014-03), 78–89.

[34] H. Song, S. Barrett, A. Clarke, and S. Clarke. 2013. Self-Adaptation with End-User Preferences: Using Run-Time Models and Constraint Solving. In

Model-Driven Engineering Languages and Systems, Vol. 8107. 555–571.
[35] A. Stimson. 1974. Photometry and Radiometry for Engineers. OCLC: 833226111.
[36] B. Yao, X. Liu, W. J. Zhang, X. E. Chen, X. M. Zhang, M. Yao, and Z. X. Zhao. 2014. Applying graph theory to the internet of things. In 2013 IEEE

International Conference on High Performance Computing and Communications, HPCC 2013 and 2013 IEEE International Conference on Embedded and
Ubiquitous Computing, EUC 2013. 2354–2361.

[37] W. Yeoh, P. Varakantham, X. Sun, and S. Koenig. 2015-12. Incremental DCOP Search Algorithms for Solving Dynamic DCOP Problems. In 2015
IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT). 257–264.

[38] M. Yokoo, T. Ishida, E.H. Durfee, and K. Kuwabara. 1992. Distributed Constraint Satisfaction for Formalizing Distributed Problem Solving. In

Proceedings of the 12th International Conference on Distributed Computing Systems. 614–621.
[39] W. Zhang, G. Wang, Z. Xing, and L. Wittenburg. 2005. Distributed Stochastic Search and Distributed Breakout: Properties, Comparison and

Applications to Constraint Optimization Problems in Sensor Networks. Artificial Intelligence 161, 1–2 (2005), 55–87.

Manuscript submitted to ACM

	Abstract
	1 Introduction
	2 Background on Distributed Constraint Optimization
	2.1 The DCOP Framework
	2.2 DCOP Solution Methods

	3 Modeling Smart Environment Configuration Problems as Distributed Constraint Optimization Problems
	3.1 Sample Ambient Intelligence Scenario
	3.2 Notations for SECP
	3.3 Formulating SECP as an Optimization Problem
	3.4 Mapping the SECP to a DCOP

	4 Distribution of the Decisions and Computations over a Physical Multi-Agent Infrastructure
	4.1 Distributing Computations
	4.2 Computation Graph Distribution Problem
	4.3 Linear Program for Optimal Distribution
	4.4 Greedy Heuristic for Computation Graph Distribution

	5 Installing Resilience in Dynamic Smart Environments
	5.1 k-Resilience
	5.2 Distributed Replica Placement Method
	5.3 Migrating Computations
	5.4 Implementing Repair using DRPM[DMCM]
	5.5 Solving DMCM using a DCOP Algorithm

	6 Experimental Evaluation
	6.1 Experimental Setup
	6.2 Evaluating SECP Resolution in Static Settings
	6.3 Evaluating Generalized Distribution on SECP
	6.4 Evaluation of DRPM
	6.5 Evaluation of the DMCM Repair Method
	6.6 Physical Demonstrator
	6.7 Summary and Discussion

	7 Related Works
	7.1 Constraint Reasoning in Ambient Intelligence
	7.2 Distributing Decisions
	7.3 Resilience of Decision Process in Dynamic Settings

	8 Conclusion
	References

