
Published in Prasad, B., editor, Second International Indian Conference on Artificial Intelligence (IICAI’05), 20-22 December 2005, Pune, India, pages 3009-3024, 2005.

Model and Experiments of Local Decision
Based on Cooperative Self-Organization

Gauthier Picard and Pierre Glize

IRIT, Université Paul Sabatier
118, route de Narbonne

F-31062 Toulouse Cedex, FRANCE
http://www.irit.fr/SMAC
{picard,glize}@irit.fr

Abstract. This paper presents an approach based on cooperative self-
organization for arti�cial systems, in order to tackle openness and dy-
namics. We propose to use cooperation as a local criterion enabling parts
of the system �the cooperative agents� to reorganize as to modify their
interactions and then the global function. We underline the di�culty of
de�ning cooperation and the means to reestablish a cooperative state
within a non cooperative system. Two cooperative agents' behaviors are
expounded, at the boundary between altruism and sel�shness. This ap-
proach is also illustrated by modeling, from a local viewpoint, a classical
constraint satisfaction problem: the N queens problem.

Keywords. Multi-Agent Systems, Self-organization, Cooperation, Lo-
cal Decision.

1 Introduction

De�ning automatic decision systems may become more di�cult since stakehold-
ers are distributed �logically, geographically or temporally� like in �ood fore-
cast, timetable generation or molecule conformation [1]. Distributed and dy-
namic Constraint Satisfaction Problems (CSP) are classical formalisms to tackle
such decisional problems. But these classical approaches often lack e�ciency
and adaptivity when the environment (the constraints modi�er) is open and dy-
namic. In this paper, MAS are used to model and solve CSP by using cooperative
self-organization notion which is inspired from social and biological phenomena.

To illustrate this model, a classical constraint based example is developed:
the N queens problem. This problem consists in positioning N queens, from the
chess game, on a N ×N chessboard, so that no queen can attack another one.
Classically, this problem is modeled with CSP formalism such as the variables
to set are the coordinates of the queens; the domains are two N -sized natural
sets; and the constraints imply the queens cannot be in the same line, column
or diagonal. Here, agent identi�cation is quite easy: the queens.

This crossroad approach is �rstly introduced by reformulating the distributed
decisional problems into CSP and then into an organization oriented multi-agent



Published in Prasad, B., editor, Second International Indian Conference on Artificial Intelligence (IICAI’05), 20-22 December 2005, Pune, India, pages 3009-3024, 2005.

2 Gauthier Picard and Pierre Glize

paradigm in section 2. To illustrate this approach the N queens problem is
modeled in section 4 and results are shown in section 5. Later, in section 6, we
discuss the potential of this model by generalizing it to other problems, and in
section 7, we compare it to existing approaches, before concluding in section 8.

2 Constraints and Multi-Agent Systems

Classical constraint-based decisional problems can be expressed by using the
CSP formalism. A CSP is a triplet 〈X ,D, C〉 such as X = {x1, . . . , xn} is the
set of variables to instantiate. D = {D1, . . . , Dm} is the set of domains. Each
variable xi is related to a domain of value. C = {c1, . . . , ck} is the set of con-
straints, which are relations between some variables from X that constrain the
values the variables can be simultaneously instantiated to. Therefore, making
a decision consists in �nding a solution, i.e. a complete and consistent a�ecta-
tion of X . In distributed constraint-based decisional problems (DCSP), distri-
bution can a�ect either variables or constraints. Most approaches consider the
�rst kind of distribution by de�ning a function φ (also de�ned by a predicate
belongs) that bounds variables to stakeholders (agents for example): φ(ci) = j
(or belongs(ci, j)) means that the constraint ci belongs to stakeholder j [2].

Finally, as in a dynamic and complex environment every constraint cannot
be completely satis�ed, distributed CSP are often tackled as an optimization
problem. Finding an optimized solution is equivalent to �nding a solution in
which the sum of all the non satis�ed weighted constraints is minimal. This
formulation is called a distributed constraint optimization problem (DCOP) [3].

2.1 Multi-Agent-Based Viewpoint

Agentifying CSP implies that constraints are owned by agents and the envi-
ronment is the variable possibility space, i.e. a n-dimension grid �the cartesian
product of all domains of D� composed of cells at the intersections of all the
domains. Agents, as constraints owners, have to explore this grid to �nd a loca-
tion, i.e. an a�ectation of variables verifying every agents' constraints. Therefore,
the main goal of an agent is to book some cells of the grid by moving from cell
to cell. The limited perceptions (some cells, and not all the grid) of an agent
means its satisfaction is only locally determined. Moreover, the situatedness of
an agent implies it can occupy only one cell at a given time; but a cell can con-
tain several agents. We distinguish a cell that is occupied, from the cells that are
reserved. Finally, the solution is obtained by running the multi-agent system, i.e.
running concurrently the agents in the grid in order to �nd a correct location.
These characteristics allow changing the agents (updating, removing, adding) or
constraints. The environment can also change by adding dimensions or cells at
runtime.



Published in Prasad, B., editor, Second International Indian Conference on Artificial Intelligence (IICAI’05), 20-22 December 2005, Pune, India, pages 3009-3024, 2005.

Cooperative Self-Organization and Local Decision 3

2.2 Organizational Viewpoint
Now, after the agenti�cation of CSP, we can reformulate the distributed decision
making problem by using an important agent-based notion: the organization.
An organization is a description of all the inter-agent relations. In our approach,
these relations are not the relations de�ned by the constraints that are shared
between several agents, but the spatial environmental relations. In fact, since
agents only perceive a limited number of cells, their interactions are only de�ned
by its position at a given time.

Then, the distributed decision problem becomes �nding an adequate orga-
nization, i.e. a positioning of all agents that satis�es every agent's constraints.
The main problem of the distributed approach of MAS is that since agents only
have limited perceptions and knowledge, and there is no global controller, agents
cannot locally detect the minimum level of constraint cost (the sum of all non
satis�ed constraints) and cannot use it during their search process, contrary to
local search methods like simulated annealing [4] or tabu search [5].

Since we consider a MAS as a dynamic system, it can investigate several
organizations before reaching a solution. Considering the autonomy of agents,
there is no controller to force the reorganization. Agents move in the grid as
a consequence of internal and local decisions. Therefore, designers must pro-
vide micro-level capabilities to change local interactions and then to change the
global organization of the whole system. The main problem of self-organization
is to de�ne the trigger of reorganization. In Kohonen's maps, the organization
is represented by weights a�ected to each neuron and its neighbors. Neurons
change their weights in terms of a given DOG function (Di�erence of Gaussians)
[6]. In arti�cial ant nests, ants stochastically react to attraction of pheromonæ,
ressources and their nest position. Similarly, we can de�ne self-organization only
by providing local capabilities, as the DOG function or the stochastic rules of
ant algorithms. This criterion must be as generic as possible.

3 Cooperative Self-organization
In order to provide similar behaviors to agents having to solve a CSP, we propose
to use the social cooperation notion, as in [7]. Here, cooperation is not only the
tasks or resources sharing but is mainly a behavioral guideline to design agents.
Cooperation can also becomes a local criterion to self-organize once it is viewed
in a proscriptive manner: agents have to reorganize when they are no more
cooperative. But how can cooperation and non cooperation be de�ned?

3.1 Cooperation
From social de�nitions, cooperation is the happy medium (or the equilibrium)
between altruism and sel�shness (see �gure 1). Altruism characterizes entities
that prefer helping others to reach their goals then achieving their own goals,
contrary to sel�sh ones that prefer reaching their own goals. Therefore, cooper-
ative agents must try to satisfy their goals and the other ones' goals as equally



Published in Prasad, B., editor, Second International Indian Conference on Artificial Intelligence (IICAI’05), 20-22 December 2005, Pune, India, pages 3009-3024, 2005.

4 Gauthier Picard and Pierre Glize

Fig. 1. Cooperation: the happy medium between altruism and sel�shness.

as possible. As it may become di�cult to precisely de�ne cooperation, it is also
possible to �nd the limit of cooperative behaviors, less altruistic as possible and
less sel�sh as possible. Another de�nition of cooperation is found in natural sys-
tems, in which it is often synonymous of symbiotic relations between two or more
entities [8].

Considering agents, cooperation is de�ned by three meta-rules, in terms of
each phase of a "perceive-decide-act" lifecycle:

De�nition 1. An agent is cooperative if it veri�es the following conditions:

� cper: perceived signals are understood without ambiguity;
� cdec: received information is useful for the agent's reasoning;
� cact: reasoning leads to useful actions toward other agents and the environ-

ment.

The �rst meta-rule (cper) concerns agents able to interpret the richness of
signals coming from the environment and requiring shape recognition, for exam-
ple. To be as cooperative as possible, an agent must know and learn interaction
languages, if necessary. The second meta-rule (cdec) concerns all the kinds of
agents, as soon as they have decisional capabilities. This implies that cooper-
ative agents must be able to produce reasonings from their skills (knowledge
about their tasks), their representations (knowledge about their environment)
and their aptitudes (rules from which an agent deduce new facts) [9]. The last
meta-rule (cact) is the most used. It requires measuring the impact of an action
on the social or physical environment, by de�ning a cooperation measure, for
example, as in section 4.

Non cooperation is simply the exact opposite: (¬cper ∨ ¬cdec ∨ ¬cact). Such
situations are called non cooperative situations (or NCS) and are the trigger
to reorganize. To sum up, cooperation is a local criterion that enables agents to
reorganize when the system is not adequate �i.e. is not in cooperative interaction
with the environment. From a global point of view, cooperation can be considered
as a meta-heuristic to explore the possibility space by cutting branches leading to
non cooperative situations. But the main problem lies in the high level de�nition
of cooperation. Even if Camps et al identify several kinds of NCS, they do not
propose a low level generic model [7]. Therefore, we illustrate how to instantiate
these meta-rules with classical problems in the next section.



Published in Prasad, B., editor, Second International Indian Conference on Artificial Intelligence (IICAI’05), 20-22 December 2005, Pune, India, pages 3009-3024, 2005.

Cooperative Self-Organization and Local Decision 5

3.2 Implementing Cooperation
Cooperative behavior can be speci�ed as exceptions to repair NCS. Such an idea
has been more developed by Bernon et al [9]. The main purpose of cooperative
agent design is to equip agents with a nominal behavior and goals, and then to
add non cooperative situations processing capabilities as exceptions in object-
oriented programming �but at a higher level. Another algorithm has also been
speci�ed by Capera et al to express the di�erent kinds of NCS an agent may
detect [10]. In this paper �since examples are quite simple� the main idea is to
consider agents as autonomous objects following a classical "perceive-decide-act"
cycle. This cycle can be interrupted when non cooperative situations are locally
detected by the agent. Therefore, de�ning the agents' behavior is equivalent to:

1. specifying a nominal behavior by attributing goals, skills, capabilities, as
said in the ADELFE methodology which is devoted to AMAS design [11].

2. specifying condition-action pairs describing cooperation exceptions. Actions
must be as cooperative as possible �at the happy medium between altruism
and sel�shness (see section 4.2).

4 Example: the N Queens Problem
This paper aims at showing an multi-agent modeling of CSP by using a coop-
erative self-organization approach. Therefore, to illustrate the model, a classical
example is developed: the N queens problem, presented in section 1.

4.1 Queen Nominal Behavior
As said in section 3.2, the nominal behavior derives from local goals, skills and
capabilities. A queen-agent (qi ∈ A) can perceive all attackable cells (pCells(qi))
and the cell it occupies (cell(qi)). Concerning actions, a queen can move on a
perceived cell1 (moveTo(cj)), reserve (or mark) the cells to inform other queens
and identify con�icts (reserve(cj) or reserve({cj , . . . , ck})), and simply rest on
the current cell (rest). The markers a�ect the common environment �the grid�
and not the MAS which is composed of distributed autonomous queens. These
marks are deleted once the agent moves. To decide which next cell to occupy,
queens must be able to perceive other queens (pAgents(qi)2). Moreover, when
reserving a cell, a queen puts extra-data about the less con�ictual cell it perceives
(see section 4.3), and therefore a queen can know the number of queens which
perceive a given cell (cost(cj) or cost(qi)3) and their constrainedness degree.

During its lifetime, a nominal queen follows the behavior presented in the
algorithm 1. This algorithm represents a nominal behavior which only leads the
queen to a local minimum without taking care of other queens. In order to avoid
local minimum resting, this behavior must be enriched by cooperation rules.
1 Even if another queen occupies the cell.
2 qj ∈ pAgents(qi) ≡ (∃k((ck ∈ pCells(qi)) ∧ (ck = cell(qj))))
3 cost(qi) ≡ (cost(cj)|(cj = cell(qi)))



Published in Prasad, B., editor, Second International Indian Conference on Artificial Intelligence (IICAI’05), 20-22 December 2005, Pune, India, pages 3009-3024, 2005.

6 Gauthier Picard and Pierre Glize

Algorithm 1 � Nominal behavior for a nominal agent (qi)
while alive do

updatePerceptions(); //removing previous marks and adding new ones
if (cost(qi) == 0) then //not occupying a conflictual cell

rest()
else

moveTo(minConflictCell(qi));
reserve(pCells(qi))

endif
done

4.2 Cooperative Behavior

As previously said, cooperative self-organization rules to avoid NCS are spec-
i�ed as exceptions. The condition guards are instantiations of the meta-rules
presented in section 3.1. The actions to repair NCS must be chosen within the
actions agents can perform as cooperatively as possible. This may imply de�n-
ing a cooperation measure to sort multiple actions. In the N queens problem,
considering the given perceptions and actions, we can identify two NCS:

� concurrency (¬cact): two queens are located on the same cell;
� con�ict (¬cact): two queens can respectively attack themselves.

Since queens cannot directly communicate by using complex semantics in
the present case, there is no cper case. In the same manner, we consider queens
always can �nd at least one action to perform, since they can rest4; therefore
there is no cdec case. The two identi�ed NCS are di�erent instantiations of the
cact rule. Actions to solve these NCS are the following:

Name: Concurrency (for queen qi)

Condition: ∃j((j 6= i) ∧ (cell(qi) = cell(qj)))

Actions: moveTo(mostCooperativeCell(qi))

This previous NCS speci�cation is quite simple: if two queens are located on
the same cell, the �rst to detect this situation moves to the less con�ictual (see
section 4.3), i.e. mostCooperativeCell, cell it perceives.

4 which is, �nally, their absolute goal



Published in Prasad, B., editor, Second International Indian Conference on Artificial Intelligence (IICAI’05), 20-22 December 2005, Pune, India, pages 3009-3024, 2005.

Cooperative Self-Organization and Local Decision 7

Name: Con�ict (for queen qi)

Condition: ∃j((j 6= i) ∧ (qj ∈ pAgents(qi)))

Actions:

//less-altruistic-as-possible
let qj = lessConstrainedAgent(pAgents(qi));
if ((qi = qj) ∨ (cost(ci) > cost(qj))

then rest
else moveTo(mostCooperativeCell(qi))

//less-selfish-as-possible
let qj = lessConstrainedAgent(pAgents(qi));
if ((qi = qj) ∨ (cost(ci) < cost(qj))

then rest
else moveTo(mostCooperativeCell(qi))

To solve this NCS, two di�erent actions can be identi�ed. The �rst one is
called less-altruistic-as-possible behavior and depends on the other agents. Here,
agents only act if they are less constrained than their neighbors (current per-
ceived agents). In other words, if an agent is more constrained than another one,
it will wait until the other moves. As the other agent respects the same rules, it
will detect this situation and then will move.

The second possible action is performed if an agent detects is more con-
strained than its neighborhood. Here, agents are cooperative because they are
less-sel�sh-as-possible.

In the two cases, agents must all respect the same cooperation rules, and if
moving is necessary, they will move to the less con�ictual cell (mostCooperativeCell).

4.3 Cooperation Measure

In order to evaluate the most cooperative cell to explore, agents must be able to
locally measure the cooperativeness degree of move actions. This measure must
take into account the constrainedness degree of the other agents. The idea is to
limit the impact of a movement by analyzing the worst constrained agents that
see a given cell, so as to choose the cell that does not increase the cost for a
queen.

De�nition 2. Let Pqi the set of cells perceived by agent qi:

Pqi ≡ pCells(qi) ∪ {cell(qi)}

De�nition 3. Let the cooperation measure coop : {c1, . . . , cn} → N :

coop(ci) ≡ max
q∈{q′|ci∈Pq′}

cost(q)



Published in Prasad, B., editor, Second International Indian Conference on Artificial Intelligence (IICAI’05), 20-22 December 2005, Pune, India, pages 3009-3024, 2005.

8 Gauthier Picard and Pierre Glize

De�nition 4. Let Cqi

min the set of cells with a minimum cost from the point of
view of an agent qi:

Cqi

min ≡ {c ∈ Pqi |@c′ 6= c, cost(c′) < cost(c)}
De�nition 5. Let Cqi

coop the set of most cooperative cells from the point of view
of an agent qi:

Cqi
coop ≡ {c ∈ Cqi

min|@c′ ∈ Cqi

min, c′ 6= c, coop(c′) ≤ coop(c)}
Therefore, the set of the most cooperative cells to choose is the set of cells

with a minimum cost and a minimum impact for the other agents. A �rst remark
concerns the contents of Cqi

coop, which cannot be empty: it contains at least the
current cell (see de�nition 2). A second remark can be done on the data an agent
needs for evaluating a cell: the number of markers on the cell, and the cost of
each agent having marked the cell (see de�nitions 3 and 4). Therefore, a marker
for a cell only contains the current cost of its owner.

Cooperative agents are then able to determine the set of cooperative cells
to move to. But, how can the next cell be chosen without leading to a local
minimum? Here is the main decisional challenge for a cooperative agent. By
now, Capera et al do not give any guidance [10]. Therefore, we can choose any
kind of method: random, tabu, etc. In the next experimentations, good results
are obtained with a very simple selection criterion (see section 5.1).

5 Experimentations
In this section, several results are obtained by simulating two di�erent coop-
erative agents' behaviors: less-altruistic-as-possible behavior and less-sel�sh-as-
possible behavior, which have been de�ned in section 4.2

5.1 Experimental Setup
The two main choices before encoding agents' behaviors and launching the solv-
ing process are:
� the initial positioning: all the agents are initially positioned at the left border

of the grid (see �g.2);
� the selection function (mostCooperativeCell(qi)) for choosing the most co-

operative cell: since implementation implies to choose an order in perceived
cells (from closest to farest, from east to north east, clockwise), this order is
used to choose the next cell. Moreover, we add a limited memory of one cell
to avoid the previous visited cell (very simple tabu implementation).

5.2 Simple Trace with 4 Queens
At the beginning of the solving process, all the agents are positioned on the left
side and the environment is not marked. The number in the cells represents the
number of markers, i.e. the number of agents seeing the cell.



Published in Prasad, B., editor, Second International Indian Conference on Artificial Intelligence (IICAI’05), 20-22 December 2005, Pune, India, pages 3009-3024, 2005.

Cooperative Self-Organization and Local Decision 9

Fig. 2. Solving trace for 4 queens, with a less-altruistic-as-possible cooperative behav-
ior, in 4 steps and 6 moves.

Fig. 3. Solving trace for 4 queens, with a less-sel�sh-as-possible cooperative behavior,
in 8 steps and 19 moves.

Less-altruistic-as-possible behavior. The �gure 2 shows a trace for the 4-
queens problem solving. The system �nds a collective solution in 4 steps (during
which every agent acts), which are delimited by dotted rectangles. Only 6 moves
are performed to reach a solution. Some agents do not act during some steps,
since they are in cooperative situations, and are not situated on non con�ictual
cells. Contrary to classical CSP solving methods with global knowledge, the
agents move to di�erent lines, as shown in the �gure when q3 moves to the
position (1, 3). Even if it is not a solution, it represents an intermediary stage to
a more adequate state.

Less-sel�sh-as-possible behavior. Figure 3 shows the solving trace for a less-
sel�sh-as-possible cooperative behavior. The system reach a collective solution
in 8 steps (twice than less-sel�sh-as-possible cooperative agents) and 19 moves.



Published in Prasad, B., editor, Second International Indian Conference on Artificial Intelligence (IICAI’05), 20-22 December 2005, Pune, India, pages 3009-3024, 2005.

10 Gauthier Picard and Pierre Glize

Fig. 4. Solving results for di�erent sizes (from 50 to 1500) with less-altruistic-as-
possible cooperative agents.

This is due to the fact that agents prefer moving when they detect NCS rather
than resting until another one moves.

5.3 Results for Di�erent Problem Sizes

Less-altruistic-as-possible behavior. Figure 4 shows solving results for dif-
ferent sizes N (from 50 to 1500) with less-altruistic-as-possible cooperative agents:

� the total number of moves (for all the agents) during the solving linearly
increases in terms of the number of agents (O(4n/3)),

� the total solving process execution time (in seconds) signi�cantly increases
in terms of the number of agents. This result shows the complexity of the
global algorithm, O(n2s): n agents perceiving and analyzing at worst 4n cells
during s steps,

� the number of steps (s), during which every agent acts, seems not to depend
on the size of the problem. Informally, it might depend on the cooperation
de�nition. Since this value is the link between micro-level (the agents) and
macro-level (the system), we cannot, by now, formally de�ne it. But exper-
imentally, we can overestimate it at O(n).

Therefore, the global complexity of the solving process can be experimentally
overestimated at O(n3), which is a common complexity to solve this problem
with classical informed heuristics like hill-climbing [12], whereas the proposed
algorithm is not informed.

Less-sel�sh-as-possible behavior. Figure 4 shows results for di�erent sizes
n of problems, with less-sel�sh-as-possible cooperative agents. These results are
equivalent �steps, solving time and moves� to those previously expounded, for



Published in Prasad, B., editor, Second International Indian Conference on Artificial Intelligence (IICAI’05), 20-22 December 2005, Pune, India, pages 3009-3024, 2005.

Cooperative Self-Organization and Local Decision 11

Fig. 5. Solving results for di�erent sizes (from 50 to 1500) with less-sel�sh-as-possible
cooperative agents.

Fig. 6. Global cost in terms of solving steps for 512 less-altruistic-as-possible cooper-
ative agents.

less-altruistic-as-possible cooperative agents �contrary to the results obtained
for a 4 queens problem, for which moves and steps were higher.

It is then interesting to remark that those two proposed behaviors tend to a
similar cooperative behavior, when the size increases, at the boundary of altruism
and sel�shness.

5.4 Adaptation and Robustness

In section 1, we mainly focus on the need to provide solutions to dynamic
problems which require adaptivity and robustness. To show how relevant the
presented approach is concerning dynamics, a set of experiments has been per-
formed with the same experimental setup than before, but with 512 agents and
random disturbances: each 10 steps, 10% of randomly chosen agents are moved
to random positions in the grid.



Published in Prasad, B., editor, Second International Indian Conference on Artificial Intelligence (IICAI’05), 20-22 December 2005, Pune, India, pages 3009-3024, 2005.

12 Gauthier Picard and Pierre Glize

The �gure 6 shows the global cost (
∑

q∈A cost(q)) in terms of steps. The
collective, after every disturbance, quickly repairs the organization and �nd a
solution: the system is adaptive and robust to environmental disturbances. More-
over, these results show that a solution is found with a random initial agent
positioning. Finally, the �rst steps of the solving process (see �g.2) are also a
particular case of perturbation since the constraint degrees, associated to cells,
are erroneous. Experimentations, with less-sel�sh-as-possible cooperative agents
and the same setup, shows similar results.

By using AMAS terminology, the result of the solving process is a spatial
organization of the system. Since this organization is found without any global
knowledge (positions, constrainedness degrees, etc.), it is a self-organizing pro-
cess, within which cooperation guarantees the evolution toward a collective so-
lution.

6 Generalizing to other CSP

Previous sections presented the cooperative self-organization based approach for
a precise example, the N queens problem. In this section, we discuss about
generalizing this approach to other CSP. As the presented algorithm are quite
simple, and do not provide any guidance on selection criteria, it remains generic.
Nevertheless, the cooperation criterion, and the perceived cells it requires, may
become more di�cult to de�ne and/or to implement to tackle more complex
problems, with more than 2 domains, for example.

6.1 The N2/2 Knights Problem

In a �rst stage, it is possible to solve problems very similar to the N queens
problem; the N2/2 knights problem, for example. This problem consists in posi-
tioning knights rather than queens. Contrary to the N queens problem, a solution
is known for all size of problem: positioning all the knights on all the white cells
(or all the black ones). Nevertheless, we can easily see, that we can obtain inter-
esting results, with only minimum changes in algorithms. The only modi�cation
concerns the perceived and attackable cells.

Figure 7 shows results for di�erent size of N2/2 knights problems with less-
altruistic-as-possible cooperative agents. The system reaches a collective solu-
tion, whereas the algorithm has not been modi�ed. Moreover, the complexity
increases since the number of agents is proportional to N2. These results are
positive in the sense that generalizing to other CSP with two domains is quite
immediate.

6.2 University Timetabling Problem

We also have been interested in a problem with more than two domains: univer-
sity timetabling. Here, agents (teachers and student groups) must cooperate to
�nd partners, rooms, timeslots and days. For this problem, a prototype has been



Published in Prasad, B., editor, Second International Indian Conference on Artificial Intelligence (IICAI’05), 20-22 December 2005, Pune, India, pages 3009-3024, 2005.

Cooperative Self-Organization and Local Decision 13

Fig. 7. Solving results for di�erent size of N2/2 knights problems (N from 4 to 128)
with a less-altruistic-as-possible cooperative behavior.

developed to illustrate the ADELFE methodology [11]. This application requires
to equip agents with limited memory of the other agents and the previous occu-
pied cells [13]. We also shown positive results on adaptation and robustness to
environmental disturbance such as constraint modi�cations or agent removals.

7 Discussion

A �rst discussion point concerns the physical distribution. The presented appli-
cation does not really show the potential of the approach. In fact, for all the
presented solvings, the agents always act in the same order. But, as we have
shown, the solving process also works with random disturbances. Some other
simulations, which are not presented in this paper, have been executed with
a random scheduler and showed similar results. This is the �rst step to real
distribution, even if the cell reservation remains in a critical section.

Another important point of discussion is the halting property of the pro-
posed algorithm. By now, it has not been formally proved that the collective
can �nd the adequate organization in a �nite solving time, contrary to classical
distributed and dynamic approaches [2, 14]. This is mainly due to the huge gap
between micro-level entities and the macro-level whole system. But this halting
property remains secondary, and we mainly inspect the termination experimen-
tally in most of the cases �like in optimization domains or in the ant approach
[15].

Finally, our approach can be brie�y compared to chosen existing ones. The
most popular algorithms to solve DCSP are ABT (Asynchronous Backtrack-
ing) and AWCS (Asynchronous Weak Commitment Search) [2]; but they have
some weaknesses as highlighted in [14]. Finally, distributed and dynamic CSP
have been de�ned to add constraint updating possibilities. In this modeling,



Published in Prasad, B., editor, Second International Indian Conference on Artificial Intelligence (IICAI’05), 20-22 December 2005, Pune, India, pages 3009-3024, 2005.

14 Gauthier Picard and Pierre Glize

decision making is performed by exploring the constraint graph. Several search
algorithms have been de�ned, such as DisDB, which is sound, complete and ter-
minates [14]. Nevertheless, these approaches and the related solving algorithms
only consider the distribution of variables and their main focus is completeness
and correctness properties. The other family of CSP solving methods, which are
in�uenced by optimization and meta-heuristics, considers the problem in a lo-
cal5 viewpoint. For example, the tabu search considers states (a given a�ectation
of values to variables) and their neighborhood, i.e. the states that are directly
accessible by applying an action (a variable a�ectation). The idea is to explore
the state which optimizes the system function. But this search is restricted by
avoiding past states (the tabus) [5]. Another example concerns the simulated
annealing which consists in favoring decreasing, in a random exploration of the
space, but without completely avoiding increasing by using stochastic structures
[4]. Nevertheless, these methods remain global, in the sense that they consider
the system as a whole and calculate the global system energy (or function) to
explore the neighborhood. Finally, one promising method to tackle the CSP in
a really local viewpoint is the ant approach which consider the solving process
only by providing behaviors to the parts of the system �the ants [16]. By us-
ing mechanisms such as stigmergy and by simulating the collective, the global
system is able to reach an optimized state. Our approach is quite close to ant
algorithms or to the approach of Rogers et al [17], but does not need stochastic
behaviors: the reaction to markers is deterministic. As for Rogers et al, using
only agents' local properties (like power level for physical sensors), the behaviors
we provide enable adding or removing agents with minimal global disturbances.

8 Conclusion
In this paper, we presented a cooperative self-organization based approach to
tackle distributed and dynamic decision problems, and more precisely, CSP.
These problems have been reformulated by using adaptive multi-agent termi-
nology. Here cooperation is viewed as the boundary between altruism and self-
ishness. When cooperation is too di�cult to be precisely de�ned, we propose
to analyze the behaviors which tends to cooperation; from the altruist and the
sel�sh viewpoints.

To illustrate this work, the example of the N queens problem has been im-
plemented and commented. This implementation shows promising results on
adaptivity and robustness when the system is subject to environmental dis-
turbances. This implementation also raises some discussion points, such as the
generalization of the proposed algorithm or the need of memory, when the agents
require more complex decision criteria to �nd an adequate organization. These
problematics cross the domains of local search and meta-heuristics to implement
optimized search processes. Cooperation seems a relevant meta-level criterion,
but requires more studies about memory charge, complexity and halting. This
5 But this local notion is related to the search space and not to the parts composing
the system.



Published in Prasad, B., editor, Second International Indian Conference on Artificial Intelligence (IICAI’05), 20-22 December 2005, Pune, India, pages 3009-3024, 2005.

Cooperative Self-Organization and Local Decision 15

last point �even if experimentally obtained� may become a good panel to coop-
erative self-organizing systems and represents our main perspective.

References
1. Georgé, J.P., Gleizes, M.P., Glize, P., Régis, C.: Real-time Simulation for Flood

Forecast: an Adaptive Multi-Agent System STAFF. In Kazakov, D., Kudenko, D.,
Alonso, E., eds.: Proceedings of the AISB'03 symposium on Adaptive Agents and
Multi-Agent Systems(AAMAS'03), University of Wales, Aberystwyth (2003)

2. Yokoo, M., Durfee, E., Ishida, Y., Kubawara, K.: The Distributed Constraint Satis-
faction Problem : Formalization and Algorithms. IEEE Transactions on Knowledge
and Data Engineering 10 (1998) 673�685

3. Modi, P.J., Shen, W., Tambe, M., Yokoo, M.: An Asynchronous Complete Method
for Distributed Constraint Optimization. In: Proceedings of the Second Interna-
tional Joint Conference on Autonomous Agents and Multiagent Systems (AA-
MAS'03). (2003) 161�168

4. Kirkpatrick, S., Gellat, C., Vecchi, M.: Optimization by Simulated Annealing.
Science 220 (1983) 671�680

5. Glover, F., Laguna, M.: Tabu Search. Kluwer (1997)
6. Kohonen, T.: Self-Organising Maps. Springer-Verlag (2001)
7. Camps, V., Gleizes, M.P., Glize, P.: A Theory of Emergent Computation Based on

Cooperative Self-Organization for Adaptive Arti�cial Systems. In: 4th European
Congress of Systems Science, Valencia. (1999)

8. Maturana, H., Varela, F.: The Tree of Knowledge. Addison-Wesley (1994)
9. Bernon, C., Camps, V., Gleizes, M.P., Picard, G.: Designing Agents' Behaviors

and Interactions within the Framework of ADELFE Methodology. In Omicini, A.,
Petta, P., Pitt, J., eds.: Fourth International Workshop on Engineering Societies in
the Agents World (ESAW'03). Volume 3071 of Lecture Notes in Computer Science
(LNCS)., Springer-Verlag (2003) 311�327

10. Capera, D., Georgé, J., Gleizes, M.P., Glize, P.: The AMAS theory for complex
problem solving based on self-organizing cooperative agents. In: 1st International
TAPOCS Workshop at IEEE 12th WETICE, IEEE (2003) 383�388

11. Picard, G., Gleizes, M.P.: The ADELFE Methodology � Designing Adaptive Coop-
erative Multi-Agent Systems. In Bergenti, F., Gleizes, M.P., Zambonelli, F., eds.:
Methodologies and Software Engineering for Agent Systems (Chapter 8), Kluwer
Publishing (2004) 157�176

12. Russel, S., Norvig, P.: Arti�cial Intelligence: a Modern Approach. Prentice-Hall
(1995)

13. Picard, G., Bernon, C., Gleizes, M.P.: ETTO : Emergent Timetabling Organiza-
tion. In: 4th International Central and Eastern European Conference on Multi-
Agent Systems (CEEMAS'05), 15-17 September, Budapest, Hungary. (2005)

14. Bessière, C., Maestre, A., Meseguer, P.: Distributed Dynamic Backtracking. In:
Proceedings of the Workshop on Distributed Constraints, in IJCAI-01, Seattle,
WA, United States. (2001)

15. Socha, K., Knowles, J., Sampels, M.: A MAX-MIN Ant System for the Univer-
sity Timetabling Problem. In: Proceedings of 3rd International Workshop on Ant
Algorithms, ANTS'02. Volume 2463 of LNCS., Springer-Verlag (2002) 1�13

16. Dorigo, M., Maniezzo, V., Colorni, A.: Ant System: Optimization by a Colony of
Cooperating Agents. IEEE Transactions on Systems, Man and Cybernetics- Part
B: Cybernetic 26 (1996) 29�41



Published in Prasad, B., editor, Second International Indian Conference on Artificial Intelligence (IICAI’05), 20-22 December 2005, Pune, India, pages 3009-3024, 2005.

16 Gauthier Picard and Pierre Glize

17. Rogers, A., David, E., Jennings, R.: Self-Organized Routing for Wireless Micro-
Sensor Networks. Special issue of IEEE Transactions on Systems, Man and Cy-
bernetics, Part A - Self-organization in Distributed Systems Engineering (2005)


