
Published in F. Bergenti, M.-P. Gleizes, and F. Zambonelli, editors, Methodologies and Software Engineering for Agent Systems, pages 157-176. Kluwer Publishing, 2004.

Chapter 8

THE ADELFE METHODOLOGY

Designing Adaptive Cooperative Multi-Agent Systems

Gauthier Picard

Marie-Pierre Gleizes
Institut de Recherche en Informatique de Toulouse (CNRS - INP - UPS)

118, route de Narbonne - 31062 Toulouse Cedex, France

{picard, gleizes}@irit.fr

Abstract This paper presents a method named ADELFE, which is led by theRational
Unified Process but is devoted to software engineering of adaptive multi-agent
systems. ADELFE guarantees that the software is developed according to the
AMAS theory1. We focus this presentation on the four first core workflows of
the RUP. Therefore, in the preliminary requirements an agreement on what the
system has to do must be reached. During the final requirements phase, the
environment of the studied system must be defined and characterized. Then, in
the analysis phase, the engineer is guided to decide to use adaptive multi-agent
technology and to identify the agents through the system andthe environment
models. Finally, the design workflow of ADELFE must provide the cooperative
agent’s model and helps the developer to define the local agents’ behavior. We
illustrate the methodology by applying it to a case study: a timetable design.

Keywords: Adaptive Multi-Agent System, Self-organization, Agent-Oriented Methodology,
Cooperation, Emergence.

1The Adaptive Multi-Agent Systems (AMAS) theory has been in development and applied for the last 8
years at the Research Institute in Computer Science of Toulouse (IRIT). See http://www.irit.fr/SMAC

i



Published in F. Bergenti, M.-P. Gleizes, and F. Zambonelli, editors, Methodologies and Software Engineering for Agent Systems, pages 157-176. Kluwer Publishing, 2004.

ii

1. Introduction

Nowadays, problems to solve in computer science are becoming more and
more complex (like information search on the Internet, mobile robots moving
in the real world and so on). Systems able to respond to such problems are
open and complex because they are incompletely specified, they are immersed
in a dynamical environment and more importantly an a priori known algorithm
to find a solution does not exist. This solution must build itself according to
interactions the system will have with its environment during its functioning.
Classical approaches to solve problems in such a context cannot be applied.
That led us to propose a theory called AMAS (Adaptive Multi-Agent System)
theory [5], based on the use of self-organizing systems.

This theory has been successfully applied to many projects:a tool to manage
the knowledge required to assist a user during information retrieval training, an
electronic commerce tool for mediation of services, a software tool for adap-
tive flood forecast or adaptive routing of the traffic in a telephone network.
Obtained results led us to promote the use of self-organizing systems based
on the AMAS theory and to build a method for designing such systems. They
are required both to reuse our know-how and to guide an engineer during an
application design. In that sense, ADELFE is a toolkit to develop software
with emergent functionality [2]. ADELFE is not a general method; it concerns
applications in which self-organization makes the solution emerge from the in-
teractions of its parts. It guarantees that the software is developed according to
the AMAS theory. It also gives some hints to the designer to tell him if using
the AMAS theory is relevant to build his application. The ADELFE toolkit
enables the development of software with emergent functionality and consists
of a software development process, a notation based on UML / AUML, some
tools supporting the process, and the notations and a library of components that
can be used to make the application development easier.

This paper is structured as follow: section 2 gives principal concepts of the
AMAS theory and a brief overview of the methodology and of thecase study:
ETTO (Emergent Time Tabling Organization) application used to illustrate the
process. Then, sections 3, 4, 5 and 6 detail respectively therequirement, the
specification and the design work definitions. Section 7 presents the main tools
associated with ADELFE. Before concluding, section 8 givesa brief compari-
son to some other well-known methodologies.

2. ADELFE Methodology Overview

In this section, after a brief presentation of the AMAS theory on which
ADELFE is based on, an overview of the ADELFE method is expounded.



Published in F. Bergenti, M.-P. Gleizes, and F. Zambonelli, editors, Methodologies and Software Engineering for Agent Systems, pages 157-176. Kluwer Publishing, 2004.

The ADELFE Methodology iii

Then, the requirements for the timetabling problem2 case study used to illus-
trate the methodology are presented.

2.1 The AMAS Theory

The AMAS theory provides a solution to build complex systemsfor which
classical algorithmic solutions cannot be applied [6, 5]. Concerned systems
are open and complex. All the interactions the system may have with its en-
vironment cannot be exhaustively enumerated; unpredictable interactions can
occur during the system functioning and the system must adapt itself to these
unpredictable events. The solution provided by the AMAS theory is then to rid
ourselves of the global searched goal by building artificialsystems for which
the observed collective activity is not described in any agent composing it.
Each internal part of the system (agent) only pursues an individual objective
and interacts with agents it knows by respecting cooperative techniques which
lead to avoid unpredictable situations (like conflict, concurrency, etc.), called
Non Cooperative Situations (NCS). Faced with a NCS, a cooperative agent acts
to reach a new cooperative state and permanently adapts itself to unpredictable
situations while learning on others. Interactions betweenagents depend on
their local view and on their ability to cooperate with each other. Changing
these local interactions reorganizes the system and thus changes its global be-
havior.

Applying the AMAS theory consists in enumerating, according to the cur-
rent problem to solve, all the cooperative failures that canappear during the
system functioning and then defining the actions the system must apply to
come back to a cooperative state.

2.2 ADELFE Overview

The ADELFE process consists in six work definitions: Preliminary Require-
ments, Final Requirements, Analysis, Design, Implementation and Tests.

Among the different activities or steps that are listed in the figure 8.1, some
are marked with a bold font to show that they are specific to adaptive multi-
agent systems. Only the four work definitions require modifications in order to
be tailored to AMAS and the main activities are presented in the next sections.
Other work definitions appearing in the RUP remain the same [11].

2This example was elaborated as a case study to compare and discuss different methodologies and multi-
agent platforms for the ASA Group of the French Artificial Intelligence Association.



Published in F. Bergenti, M.-P. Gleizes, and F. Zambonelli, editors, Methodologies and Software Engineering for Agent Systems, pages 157-176. Kluwer Publishing, 2004.

iv

WD1
Preliminary

Requirements

WD2
Final 

Requirements

WD3
Analysis

WD4
Design

A1: Define user requirements
A2: Validate user requirements
A3: Define consensual requirements
A4: Establish keywords set 
A5: Extract limits and constraints

A6: Characterize environment
S1: Determine entities
S2: Define context
S3: Characterize environment

A7: Determine use cases 
S1: Draw up an inventory of the use cases 
S2: Identify cooperation failures
S3: Elaborate sequence diagrams

A8: Elaborate UI prototypes 
A9: Validate UI prototypes

A10: Analyze the domain
S1: Identify classes 
S2: Study interclass relationships
S3: Construct the preliminary class diagrams

A11: Verify the AMAS adequacy
S1: Verify the global level AMAS adequacy
S2: Verify the local level AMAS adequacy

A12: Identify agents 
S1: Study entities in the domain context
S2: Identify the potentially cooperative entities
S3: Determine agents 

A13: Study interactions between entities
S1: Study the active-passive entities relationships
S2: Study the active entities relationships

A14: Study agents relationships

A15: Study the detailed architecture and the multi-agent model
S1: Determine packages 
S2: Determine classes 
S3: Use design-patterns
S4: Elaborate component and class diagrams

A16: Study the interaction language
A17: Design an agent 

S1: Define its skills
S2: Define its aptitudes 
S3: Define its interaction language
S4: Define its world representation
S5: Define its Non Cooperative Situations 

A18: Fast prototyping
A19: Complete design diagrams

S1: Enhance design diagrams
S2: Design dynamic behaviours

Figure 8.1. ADELFE process is described in three levels:Work Definitions(WDi), Activities
(Aj) andSteps(Sk).

2.3 The ETTO Case Study

In order to show how a self-organizing application can be developed us-
ing the tools linked with ADELFE, the next sections will refer to the ETTO
(or Emergent Time Tabling Organization) application. Description and de-
sign of the system related to ETTO are not the main objective of this article
and more information is available in [2]. The chosen problemis a classical
course timetabling one in which time slots and locations (rooms) must be as-
signed to teachers and students groups in order to let them meet during lectures.
Usually, solutions to such a problem can be found using different techniques
like constraint-based ones or meta-heuristics techniques(simulated annealing,
taboo search, graph coloring, etc.) and more recently, neural networks, evolu-
tionary or ant algorithms. However, no real solving technique exists when the
constraints can dynamically evolve and when the system needs to adapt. Be-



Published in F. Bergenti, M.-P. Gleizes, and F. Zambonelli, editors, Methodologies and Software Engineering for Agent Systems, pages 157-176. Kluwer Publishing, 2004.

The ADELFE Methodology v

cause this problem is not a simulation one, because it is actually complex when
handmade or not (it belongs to the NP-complete class of problems) and has no
universal solution, we do think that it represents the rightexample to apply the
AMAS theory. The aim is to make a solution emerge, at the macro-level of the
built MAS, from the interactions of independent parts at themicro-level.

General requirements for this ETTO problem are the following. Stakehold-
ers are teachers, students groups and lecture rooms. Every actor individually
owns some constraints that must be (at best) fulfilled. A teacher has some con-
straints about his availabilities (e.g. the days or the timeslots during which
he can teach), his capabilities (e.g. the topics he can lecture on) and the needs
he has about particular pedagogic equipments (overhead projectors, video pro-
jectors, a defined lecture room for a practical work, etc.). Astudents group
must take a particular teaching made up of a certain number oftime slots for
a certain number of teaching topics (X time slots for a topic 1, Y time slots
for a topic 2, etc.). A lecture room is equipped or not with specific equipments
(an overhead projector, a video projector or any equipment for practical works)
and can be occupied or not (e.g. during a given time slot or on acertain day).

3. Preliminary Requirements

The aim of the preliminary requirements is to define the system to be and to
establish an agreement on the preliminary requirements.

The preliminary requirements work definition concerns the description of
the system and the environment in which the system will be deployed. It con-
sists in defining what to build or what is the most appropriatesystem for end-
users. End-users, clients, analysts and designers have to list the potential re-
quirements, to define the context in which the system will be deployed and to
list the functional and non-functional requirements (Activity #1 and #3). They
must agree on these requirements (Activity #2 and #3). Then,designers have
to define the main concepts used to describe the application and its domain (the
system and its environment) (Activity #4). And they must define the limits and
constraints of the system they have to build (Activity #5).

4. Final Requirements

The aim of the final requirements is to transform this view in ause-case
model, and to organize and to manage the requirements (functional or not) and
their priorities. In fact, at this stage, the designer has todefine the function of
the studied system and to model its environment. To take intoaccount adap-
tive multi-agent systems, four steps are added to the RUP process: three are in
the Activity #6 (Characterize environment) and one is in theActivity #7 (De-
termine Use cases). The two last activities in this workflow relating to User
Interface elaboration are not described here.



Published in F. Bergenti, M.-P. Gleizes, and F. Zambonelli, editors, Methodologies and Software Engineering for Agent Systems, pages 157-176. Kluwer Publishing, 2004.

vi

4.1 Characterization of the Environment

This activity (Activity #6 in figure 8.1) is divided into three steps: deter-
mining the entities that are involved in the system, definingthe context and
characterizing the environment. Entities to identify are active or passive enti-
ties in interaction with the system.

A detailed definition of the system environment is necessaryto develop
adaptive systems, which are able to respond to any change. This step firstly
focuses on what may be in interaction with the studied systemin terms of
passive or active entities, or constraints. In our example,teachers, students,
the planning manager and the room manager are active entities because they
are able to change by themselves their own constraints or they can interact
with the system. Rooms are passive because they represent resources and they
cannot modify their characteristics by themselves. The NPP(or National Peda-
gogic Plan) is the database that contains all information concerning the courses
(maximum number of sessions per week, hour quotas for each formation, etc):
it is a passive entity.

In a second time, this step must define the context of the system. It requires
a characterization of data streams and interactions between entities and the sys-
tem. Data streams between passive entities and the system are expressed using
collaboration diagrams. Interactions between active entities and the system are
expressed using sequence diagrams.

In our example, two kinds of data flows between the system and passive
entities exist: when the system consults the NPP and when thesystem consults
room constraints. When an active entity wants to interact with the system, it
may only have to change constraints (owner constraints or room constraints).
In the other sense, the system interacts with the active entity by displaying the
planning.

Finally, to characterize the environment, designers must think about the en-
vironment of the system to build in terms of being accessibleor not, determin-
istic or not, dynamic or static and discrete or continuous. These terms have
been reused from [14] and represent a help to later determineif the AMAS
technology is needed or not. This characterization may enable the designer to
detect some special use cases to respond to environment behavior. In the case
study, the environment of the system can be characterized asfollow:

Dynamic: the evolution of the active entities does not depend on the
system, they are unpredictable from the point of view of the system;

Accessible: the environment can obtain information on the state of the
environment;

Non-deterministic: the system is not able to know what could be the
effects of its actions on active entities;



Published in F. Bergenti, M.-P. Gleizes, and F. Zambonelli, editors, Methodologies and Software Engineering for Agent Systems, pages 157-176. Kluwer Publishing, 2004.

The ADELFE Methodology vii

Rooms manager

Courses manager

Students group

Teacher

Initialize
courses

Modify
courses

Initialize
constraints

Modify
constraints

Visualize
current
result

«include»

Launch
solving

Initialize
rooms

Modify
rooms

System

Cooperation
Failure
Possibilities

Figure 8.2. The use cases for the ETTO problem. Associations toVisualize current result case
are potentially non cooperative: the result of the time tabling resolution is the only cause of
cooperation failure between the users and the system, in thesense that users expect the system
to satisfy their constraints.

Continuous: the number of interactions between system and entities are
infinite.

4.2 Determination of the Use Cases

The main objective of this activity, which ends the requirements workflow, is
to clarify the different functionalities the system has to respond to. This activity
is divided into three steps which enable to design use cases,to elaborate the
associated sequence diagrams and to identify cooperation failures. Only active
entities are implied in these use cases, which are the results of a functional
requirements set. Identification of cooperation failures between the system and
its environment is realized in order to help designers to detect problems in the
sense of the AMAS theory : Non Cooperative Situations. This identification
will be refined during the development process and enables identification of
agents later in the process. The use cases for the timetabling problem are shown
in figure 8.2. Cooperation failures are represented on use cases diagrams by
dotted lines.

5. Analysis

From a multi-agent point of view, the identification of the agents must take
place in this workflow. The analysis work definition has to develop an under-
standing of the system, its structure in terms of componentsand to know if the
AMAS theory is required.



Published in F. Bergenti, M.-P. Gleizes, and F. Zambonelli, editors, Methodologies and Software Engineering for Agent Systems, pages 157-176. Kluwer Publishing, 2004.

viii

5.1 Domain Analysis

Domain analysis (Activity #10) is a static view and an abstraction of the real
world and the linked entities. Considering separately eachuse-case by defining
scenarios, the designer has to divide the system into entities. The result of this
step is a set of entities in preliminary class diagrams.Teacher, CourseManager,
StudentGroup, Room, RoomManager and NPP classes appear naturally as real
world entities. In a second time, we tried to determine what entities could be
useful for our system. A board is proposed to visualize the organization (Grid

andCell classes) and theConstraintManager class to control constraints for each
entity that owns aConstraint class instance. Cells represent intersections of
different dimensions (days, rooms, etc).

5.2 Adequacy of the AMAS Theory

This activity (Activity #10 in figure 8.1) aims to help the designer to decide
if the AMAS theory is adequate to solve his problem because, for certain ap-
plications, this kind of programming can be useless. A software component
has been developed with several criteria to study the adequacy at two levels :

At the global level to answer the question “is a system implementation
using AMAS needed?”

At the local level to try to answer the question “do some components
need to be implemented as AMAS?” i.e. is some decomposition or re-
cursion useful during design?

For the case study, the decision tool clearly suggests to usethe AMAS to
design the global level. Moreover, the tool indicates that some entities could
be decomposed as AMAS. So, once the agents are identified, thedesigner has
to reuse the method on them, as developed below.

5.3 Agent Identification

In this activity (Activity #12), we are only interested in agents that enable
a designer to build our sort of AMAS. The designer has to determine which
entities fit with this agent type: “cooperative agents”. A cooperative agent ig-
nores the global function of the system; it only pursues an individual objective
and tries to be permanently cooperative with other agents involved in the sys-
tem. The global function of the system is emerging (from the agent level to
the multi-agent level) thanks to these cooperative interactions between agents.
An agent can also detect Non Cooperative Situations (NCS) that are situations
it judges as being harmful for the interactions it possesseswith others, such as
lack of understanding, ambiguity or uselessness. This doesnot mean that an
agent is altruistic or always helping other agents but it is just trying to have use-



Published in F. Bergenti, M.-P. Gleizes, and F. Zambonelli, editors, Methodologies and Software Engineering for Agent Systems, pages 157-176. Kluwer Publishing, 2004.

The ADELFE Methodology ix

ful (from its point of view) interactions with others. Thus,facing up to a NCS,
an agent always acts to come back to a cooperative state. In fact, the behavior
of the collective compels the behavior of an agent. In ADELFE, designers are
given some guidelines: an entity can become an agent if it canbe faced with
“cooperation failures” and may have evolutionary representations about itself,
other entities or about its environment and/or may have evolutionary skills.
At this stage, we identify teachers and students groups as being cooperative
agents. All other entities are considered as objects.

5.4 Adequacy of the AMAS Theory at the Local Level

If the first step of adequacy to the AMAS theory indicates a possible de-
composition, each agent has to be analyzed as a system. The goals of an agent,
Teacher or StudentGroup, are to find different places and partners to follow or
to give each course. These goals raise the problem of ubiquity. Agents cannot
be at different places at different moments. Therefore, we propose to create
one agent per course for each teacher or student group. Two agent levels are
distinguished:

RepresentativeAgent (RA): at the highest level, it represents a teacher or a
student group within the system;

BookingAgent (BA): at the lowest level, it is responsible for finding part-
ners and booking rooms for a RA. There are as many BA as the number
of courses a teacher has to give or a student group has to follow.

The identified agents have to be added to the preliminary class diagram as
shown in figure 8.3.

Courses
manager

attributes courses

1

*

attributes courses

1

*

Room

defines constraints
1

*

splits timeslots

11..*

Rooms
manager

«cooperative
agent»

Students
group

manages constraints
1

1

occupies

1

*

«cooperative
agent»

Teacher

manages constraints 1

1

occupies1

*

Constraint
1*

Constraints
manager Grid

*1
Cell

Figure 8.3. The main class diagram for the ETTO problem. Three classes ofagents appear: the
StudentsGroup, theTeacher and theBookingAgent. The two firsts are interface agents between
the system and the users.BookingAgents aim to reserve time slots (Cell of a Grid) andRooms
for Teachers orStudentsGroups in terms of theirConstraints.



Published in F. Bergenti, M.-P. Gleizes, and F. Zambonelli, editors, Methodologies and Software Engineering for Agent Systems, pages 157-176. Kluwer Publishing, 2004.

x

6. Design

The design work definition aims to formulate models that focus on non func-
tional requirements and the solution domain and that prepare for the implemen-
tation and test of the system. In ADELFE, agents being identified and their
relationships being studied, designers have now to study the way in which
the agents are going to interact (Activity #15) thanks to protocol diagrams.
ADELFE also provides a model for designing cooperative agents (Activity
#16); designers must describe, for each type of agents, its skills, its aptitudes,
its interaction language, its world representation and theNon Cooperative Situ-
ations this agent can encounter. The global function of a self-organizing system
is not coded; designers have only to code the local behavior of the parts com-
posing it. An activity of fast prototyping (Activity #17) based on finite state
machines has been added to the process. It enables designersto verify the be-
havior of the agents being built. Then designers have to complete the previous
defined class diagram (Activity #18). Once a class diagram enhanced, finalized
indeed, this diagram may require the development of a statechart diagram. The
aim is to highlight the different state changes of an entity when it is interacting
with others.

Because the complete design cannot be described in this paper, we only
detail the agent design activity which does not exist in other methodologies.
Five steps compose this activity, the fourth one enables to endow an agent with
classical parts such as: skills, aptitudes, an interactionlanguage and world
representations and the last one is more specific to AMAS theory.

6.1 Study of Interaction Languages

The result of this activity (Activity #15) is a set of protocol diagrams rep-
resenting the different interaction languages that may be used by the agents.
Figure 8.4 shows a sample protocol between twoBookingAgents having two
different roles:ExploringTeacherAgent andOccupyingTeacherAgent. The AUML
– Agent Unified Modeling Language [13] – notation is used but some spe-
cific functionality has been added to AIP diagrams to fit to theAMAS the-
ory requirements. The decision-making process corresponding to an OR or
a XOR branch is done by an«aptitude»-stereotyped operation attached to the
branch-node (see §6.2). For example, in figure 8.4, theisRoomFitting operation
is attached to the first XOR node ; i.e. depending on the results of this opera-
tion, theExploringTeacherAgent may either request for more information before
resuming its exploration of the grid, or negotiate in terms of the constraints
which agents own.

Once the set of protocols defined, designers may assign them to agents dur-
ing the new activity, as these are generic. Another possibility is to specify fully
generic protocols in which only roles are manipulated.



Published in F. Bergenti, M.-P. Gleizes, and F. Zambonelli, editors, Methodologies and Software Engineering for Agent Systems, pages 157-176. Kluwer Publishing, 2004.

The ADELFE Methodology xi

BookingAgent /
ExploringTeacherAgent

isRoomFitting()
bookingAgentSeen()

inform()

findNextCell()

acceptFreeRoom()

bookRoom()

inform()

refuseFreeRoom()

inform()findNextCell()

BookingAgent /
OccupyingTeacherAgent

getInformation()

informAboutConstraints()

manageConstraints()

freeRoom()

findNextCell()

x

x

Figure 8.4. An example of protocol diagram between twoBookingAgents of two different
Teachers. The first agent explores the time-table grid to find satisfying slots and rooms. The
second one already occupies a room and a slot. This diagram explains the negotiation between
these two agents when the first agent meets the second agent. This negotiation may either result
on the leaving of the first agent or the booking, by the first agent, and the leaving of the second
agent.

6.2 Agent Design

This activity helps the designer to fill in a generic architecture given for an
agent used in the AMAS theory. ADELFE is a method which is devoted to
a specific kind of agents: cooperative ones. Therefore, evenif an agent still
follows the same defined life cycle – it gets perceptions fromits environment
and autonomously uses them to decide what to do in order to reach its own
goal and, finally, acts to realize the action it has decided before – it has some
specific characteristics and is then composed of five parts that will constitute
its own behavior:

Skills that are knowledge about a domain enabling the agent to perform
actions.

Aptitudeswhich are the abilities an agent possesses to reason on its
knowledge (concerning the domain) or on its representationof the world.

An interaction languagewhich enables the agent to interact and commu-
nicate with others in a direct or indirect (possibly, using its environment)
way.

Representationsof the world that are knowledge used by an agent to
represent itself, other agents or its environment.



Published in F. Bergenti, M.-P. Gleizes, and F. Zambonelli, editors, Methodologies and Software Engineering for Agent Systems, pages 157-176. Kluwer Publishing, 2004.

xii

Non Cooperative Situationsthat an agent must detect and process be-
cause these situations are judged “harmful” for both the agent and its
viewpoint about the collective.

Adelfe Stereotypes. To enable the developer to deal with these specific
components in the ADELFE methodology, nine stereotypes have been defined
to express how an agent is formed and/or how its behavior may be expressed:
«cooperative agent», «characteristic», «perception», «action», «skill», «aptitude»,
«representation», «interaction» and«cooperation».

In order to modify the semantics of classes and features depending on the
specificities of cooperative agents these stereotypes and their rules (written in
OTScript language) are included in the OpenTool graphical development tool
linked with ADELFE. All these stereotypes, except«cooperative agent», can be
applied to attributes and/or methods. All the examples appearing in this section
refer to the figure 8.5.

The«cooperative agent» stereotype expresses that an entity is an agent which
has a cooperative attitude and can be used to build AMAS. An agent will be im-

«cooperative agent»
BookingAgent

- run ()
- perceive ()
- decide ()
- act ()

- father- son

1*

perception
+ message ()
- currentCell: Cell
- roomInfo: String [*]
- nearAgents: BookingAgent [*]

interaction
+ getInformation ()
+ inform ()
+ informAboutConstraints ()
+ acceptPartnership ()
+ acceptFreeRoom ()
+ bookingAgentSeen ()

representation
- ownConstraints: Constraint [*]
- bookingStates: BookingState [*]
- partnershipState: PartnershipState
- brothersConstraints: Constraint [*]
- ownPartner: BookingAgent
- lastEncounteredAgents: BookingAgent [*]

skill
- findNextCell ()
- isProposalAcceptable ()
- interpretMessage ()

aptitude
- manageConstraints ()
- manageReservations ()
- managePartners ()
- manageMessages ()
- isRoomFitting ()

cooperation
- bookingIncompetence ()
- bookingConflict ()
- bookingUselessness ()
- messageUnproductivity ()
- partnershipConflict ()
- partnershipIncompetence ()

action
- bookRoom ()
- freeRoom ()
- signPartnership ()
- cancelPartnership ()
- sendMessage ()

«cooperative agent»
StudentGroup

- perceive ()
- decide ()
- act ()

perception
representation
skill
aptitude
cooperation
action

«cooperative agent»
Teacher

- perceive ()
- decide ()
- act ()

perception
representation
skill
aptitude
cooperation
action

«cooperative agent»
RepresentativeAgent

- run ()
- decide ()
- act ()
- perceive ()

perception
+ message ()

representation
- bookingAgents: BookingAgent [1..*]
- manager: Person
- ownConstraints: Constraint [*]
- representedPerson: Person

skill
- interpretMessage ()

aptitude
- manageBookingAgents ()
- manageConstraints ()
- manageMessages ()

cooperation
- Incompetence ()

action
- createBookingAgent ()
- deleteBookingAgent ()
- addConstraints ()
- deleteConstraints ()
- sendMessage ()

Figure 8.5. The two main«cooperative agent»-stereotyped classes :RepresentativeAgent and
BookingAgent. The first one can represent either aStudentGroup or aTeacher.



Published in F. Bergenti, M.-P. Gleizes, and F. Zambonelli, editors, Methodologies and Software Engineering for Agent Systems, pages 157-176. Kluwer Publishing, 2004.

The ADELFE Methodology xiii

plemented using a class that will be stereotyped with«cooperative agent». This
class must have a run method that simulates the agent’s life cycle. Therefore,
to ensure that this method does exist, an agent inherits froma superclass called
CooperativeAgent. A sample associated coherency rule is: an agent-stereotyped
class inherits (directly or not) from theCooperativeAgent class. For example, in
the course timetabling application,BookingAgents (BA) have been identified to
represent teacher and/or student entities. A BA’s goal is tofind convenient time
slots in the timetable. ABookingAgent class can then be defined and stereotyped
with «cooperative agent». This class inherits from theCooperativeAgent class and
therefore contains four methods: run, perceive, decide andact.

The«characteristic» stereotype is used to tag an intrinsic or physical property
of a cooperative agent. An attribute represents the value ofa property. A
method modifies or updates the value of a property. A characteristic can be
accessed or called anytime during the life cycle. It can alsobe accessed or
called by other agents.

The «perception» stereotype expresses how an agent receive information
from the physical or social (other agents) environment. Attributes represent
data coming from the environment. Methods are means to update or mod-
ify «perception»-stereotyped attributes. A associated coherency rule is: “an
attribute stereotyped with«perception» is necessarily private”.

The «action» stereotype is used to signal how an agent acts on the envi-
ronment during its action phase. Methods are possible actions for an agent.
Attributes are parameters of an action. An agent is the only one that can use its
actions. A coherency rule associated is: ‘’an attribute stereotyped with«action»

is private and a method that is stereotyped using«action» is private and can only
be called during the action phase of an agent”.

The «skill» stereotype is used to tag specific knowledge enabling an agent
to realize its own partial function. Methods represent reasoning an agent can
do. Attributes are data useful to act on the world or parameters of a«skill»-
stereotyped method. Such an attribute or method can only be accessed/affected
or called by the agent itself to express its autonomy of decision. Skills can be
represented by a multi-agent system when they need to evolve. A coherency
rule associated is: ‘’an attribute or a method that is stereotyped with«skill» is
necessarily private. Such an attribute can only be used by a«skill»-stereotyped
method”.

The «aptitude» stereotype expresses the ability of an agent to reason both
about knowledge and beliefs it owns. Methods express reasoning that an agent
is able to do. Attributes represent functioning data or parameters of reason-
ing. A method or an attribute which is stereotyped with«aptitude» can only be
accessed/affected or called by the agent itself, to expressits autonomy. Co-
herency rules associated are:



Published in F. Bergenti, M.-P. Gleizes, and F. Zambonelli, editors, Methodologies and Software Engineering for Agent Systems, pages 157-176. Kluwer Publishing, 2004.

xiv

An attribute or a method that is stereotyped with«aptitude» is necessarily
private.

An «aptitude» attribute can only be used by a method that is also stereo-
typed with«aptitude».

A method that is stereotyped with«aptitude» can only be called during
the decision phase of the agent.

An «aptitude»-stereotyped method can only call methods or attributes
that are stereotyped with«perception», «representation» or «interaction».

The«representation» stereotype is a means to indicate world representations
that are used by an agent to determine its behavior. Attributes are knowledge
units describing an agent. Methods are means to handle representations: access
or alteration. Representations that may evolve can be expressed using a multi-
agent system. Coherency rules associated are:

An attribute or a method which is stereotyped with«representation» is
necessarily private.

A «representation»-stereotyped attribute can only be used by a method
which is stereotyped with«representation» or «aptitude».

A «representation»-stereotyped method can only be called during the de-
cision phase of the agent.

The«interaction» stereotype tags tools that enable an agent to communicate
directly or not with others or with its environment. Methodsexpress the ability
an agent owns to interact with others. Attributes representfunctioning data or
parameters of an interaction. Interactions can be classified into two groups:
perceptions and actions which are also tagged with stereotypes («perception»

and«action»). A coherency rule associated is: A method stereotyped with«in-

teraction» can only call methods stereotyped with«skill» or «interaction». More-
over, all the methods appearing on protocol diagrams are automatically stereo-
typed«interaction».

The«cooperation» stereotype expresses that the social attitude of an agent is
implemented using rules allowing Non Cooperative Situations (NCS) solving.
An agent must have a set of rules (predicates) that enable it to detect NCS.
It must also have a method to enable it to solve NCS, this method associates
actions with situations in order to process them. A method that is stereotyped
with «cooperation» is always called during the decision phase of an agent and
can be of two kinds:

A method that returns a Boolean result and tries to detect a NCS; its
parameters are stereotyped with«perception», «representation» or «skill»,



Published in F. Bergenti, M.-P. Gleizes, and F. Zambonelli, editors, Methodologies and Software Engineering for Agent Systems, pages 157-176. Kluwer Publishing, 2004.

The ADELFE Methodology xv

A solving method (a priori, one per agent) that allows the association of
one or several solving actions with each NCS.

An associated coherency rule is: ‘’a method stereotyped with «cooperation»

is private”.

Define Non Cooperative Situations. This step represents another contri-
bution of ADELFE to the design workflow. Rules which allow theagent to
have a cooperative attitude have to be defined: how to detect and to remove
NCS in order to be more cooperative. During it, designers must fill up a ta-
ble describing each NCS encountered by each previously identified agent.This
table contains:

The name of the NCS,

The state in which the agent is during the detection of NCS. This state
can be defined by a set of values of attributes or results of methods which
can be stereotyped as«perception», «characteristic» or «representation»,

The textual description of the NCS,

The conditions describe the different elements that enableto locally de-
tect the NCS. Methods and attributes used to express conditions must be
stereotyped as«perception» or «representation» or «skill».

The actions linked to the NCS. The actions describe what the agent has
to do to remove this NCS. Methods and attributes used to express actions
must be stereotyped«action».

For each table, at least one«cooperation»-stereotyped method must be de-
fined. This method corresponds to the NCS detection and will be expressed
using the state and the conditions i.e. methods and attributes that are stereo-
typed as«perception», «representation» or «characteristic».

If several actions are possible to remove the detected NCS, you must define
another method to choose the action to do. This method is stereotyped as«co-

operation». If only one action is possible the definition of this second method is
useless: this action will be always executed. These methodswill be integrated
in the behavior of the agent.

For instance, the NCS for aBookingAgent are:

Partnership incompetence: the BA meets another BA that may be an
uninteresting partner;

Booking incompetence: the BA is in a cell that is uninteresting to book;

Message unproductiveness: the BA receives a message that is not cor-
rectly addressed;



Published in F. Bergenti, M.-P. Gleizes, and F. Zambonelli, editors, Methodologies and Software Engineering for Agent Systems, pages 157-176. Kluwer Publishing, 2004.

xvi

Partnership conflict: the BA meets another BA that is interesting, but
this other BA has already a partner;

Booking conflict: the BA is in a cell that is interesting to book but this
cell is already booked;

Booking uselessness: the BA meets its partner: they must separate to
explore more efficiently the grid.

7. ADELFE Tools

Within ADELFE, three tools are associated with the process and the UML
/ AUML notations. The first tool is based on the OpenTool commercial soft-
ware, enriched to take into account adaptive multi-agent system development.
The second tool is an interactive tool which supports the process and helps
designers to follow the process and to execute associated tasks. The last tool
is a support decision tool to help designers to decide if the AMAS theory is
relevant for the current system to design. In this section weonly present the
two first tools.

7.1 OpenTool for ADELFE

OpenTool is a development tool, written in the OTScript language, which
is designed and distributed by TNI-Valiosys, one of the ADELFE partners.
On the one hand, OpenTool is a commercialized graphical toollike Rational
Rose and supports the UML notation to model applications while assuring that
the produced models are valid. More specifically, it focuseson analysis and
design of software written in Java. On the other hand, OpenTool enables meta-
modeling in order to design specific configurations. This latter feature has
been used to extend OpenTool to take into account the specificities of adaptive
multi-agent systems and thus include them into ADELFE.

The first modification added to OpenTool concerns the static view of the
model: the class diagram. Nine stereotypes are integrated to modify the se-
mantics of classes and features depending on the specificities of cooperative
agents (see §6.2).

As ADELFE reuses AUML to model interactions between agents,Open-
Tool was enhanced to construct AIP diagrams (see §6.1). AIP diagrams are an
extension to existing UML sequence diagrams that enables different message
sending cardinalities (AND, OR or XOR). This second modification was en-
riched with the possibility to easily attach a protocol to anagent class. More-
over, in order to simulate agents’ behaviors by using finite state machines,
OpenTool can automatically generate state-chart diagramscorresponding to
protocols and roles within these protocols.



Published in F. Bergenti, M.-P. Gleizes, and F. Zambonelli, editors, Methodologies and Software Engineering for Agent Systems, pages 157-176. Kluwer Publishing, 2004.

The ADELFE Methodology xvii

7.2 Interactive Tools

ADELFE also provides an interactive tool that helps designers when follow-
ing the process established in the method [1]. In classical object-oriented or
agent-oriented methods, this kind of tool does not really exist. Even if some
tools linked with agent-oriented methods exist (e.g. AgentTool [9] for MaSE,
PTK for PASSI [8] or the INGENIAS tool [10]), they are not really a guide
and a verification tool for designers following a methodological process. Gen-
erally, some guides like books or html texts are given (e.g.,a guide to follow
the RUP is available on the web site of Rational Software) butthey are not re-
ally interactive tools able to follow a project through the different activities of
the process. The ADELFE interactive tool is linked both witha tool to verify
the AMAS adequacy and with OpenTool. It can communicate withOpenTool
in order to access to different diagrams as process progresses. For these two
reasons, it can be considered as a real guide that supports the notation adopted
by the process and verifies the project consistency.

Each activity or step of the process is described by this tooland exempli-
fied by applying it to the ETTO problem. Within the textual description or the
example, some AMAS theory specific terms can be attached to a glossary in
order to be explained. That is why the interactive tool is composed of several
interfaces. The “Manager” interface indicates for the different opened projects,
the different activities and steps designers have to followwhen applying the
methodology. The “Work Product” interface lists the work products that have
been produced or that have to be produced yet regarding the progress when
applying the methodology. The “Description” interface explains the different
stages (activities or steps) designers must follow to applythe methodology pro-
cess. The “Example” interface shows how the current stage has been applied to
ETTO. The optional “Synthesis” interface shows a global view and an abstract
of the already made activities. And finally the optional “Glossary” interface
explains the terms used in the methodology and defines the stereotypes that
have been added to UML.

8. Comparison with other Methodologies

ADELFE is based on object-oriented methodologies, followsthe RUP (Ra-
tional Unified Process) and uses UML / AUML notations as MESSAGE [4].
It covers the entire process of software engineering like MESSAGE, PASSI
and TROPOS [7]. And as DESIRE [3], MASSIVE, INGENIAS/MESSAGE
[10], MaSE [9], PASSI, PROMETHEUS, it provides modeling graphical nota-
tions which are supported by tools. ADELFE is not a general method such as
GAIA [15] but it has a niche, which concerns applications that require adaptive
multi-agent system design using the AMAS theory. Therefore, like MESSAGE
dedicated to telecoms applications, ADELFE gives guidelines for the identifi-



Published in F. Bergenti, M.-P. Gleizes, and F. Zambonelli, editors, Methodologies and Software Engineering for Agent Systems, pages 157-176. Kluwer Publishing, 2004.

xviii

cation of the application areas for which adaptive systems technology is better
suited than other technologies e.g. object-oriented technologies.

Many methods, like AAII [12], TROPOS, MaSE or MESSAGE, do notfo-
cus on the dynamic aspect of the software environment and on the adaptation
abilities of the software. TROPOS, like ADELFE, is concerned by dynamics.
It expresses the dynamics and openness of the application inthe requirements
phases with the model of the environment and with particularsoft goals. How-
ever, it does not give guidelines to design the right agents’behavior allowing
the adaptability of the system.

In adaptive multi-agent systems, the environment (in whichthe system is
operating) is a key notion; but in a general way, the environment modeling is
not a central point in existing methodologies. In DESIRE, the environment
is taken into account at the agent level in the “world interaction management
module”: an agent maintains and interacts with its environment in the same
way as with other agents. In TROPOS, the environment model isdescribed in
terms of actors, their goals and interdependencies. In MESSAGE, the domain
model captures some entities of the system environment and the interactions
with the environment are described for each role in terms of sensory inputs
and acquaintances, resources ownership and accesses, and finally tasks and
actions. In AAII, the relation between the agent and the environment is taken
into account in the interaction model.

At the design level, some methodologies are dedicated to an agent architec-
ture as AAII with BDI, ADELFE with cooperative agents. In other methodolo-
gies such as GAIA, MESSAGE, TROPOS, the architecture of the implemented
agents is not defined and it is quite open. Note that TROPOS offers different
architecture styles (flat structure, pyramid, etc.) for itsarchitectural design
phase.

In the analysis workflow of GAIA, the agents are already identified and the
methodology provides nothing to realize this identification. In TROPOS the
agents are found inside the actors’ set. In AAII, the elaboration and refinement
of the agent model and the interaction model help the designer to define agents.
The agent definition, which is given in MESSAGE and in ADELFE,defines
the features that will be ascribed to the entities that the developer will choose
to consider as agents.

9. Conclusion

The aim of this paper was to present the ADELFE methodology which is
a multi-agent-oriented methodology suited to adaptive multi-agent systems
based on the AMAS theory. ADELFE provides a new methodology to design a
society of agents exhibiting a coherent activity. The first prototype is now op-
erational and can be tested on the site http://www.irit.fr/ADELFE. Until now



Published in F. Bergenti, M.-P. Gleizes, and F. Zambonelli, editors, Methodologies and Software Engineering for Agent Systems, pages 157-176. Kluwer Publishing, 2004.

REFERENCES xix

ADELFE has been used or is used in several case studies: an intranet system
design, a timetabling problem, a flood forecast system (in progress), a mechan-
ical design system (in progress) and a bioinformatics system (in progress).

Acknowledgments

We would like to thank the support of the French Ministry of Economy,
Finances and Industry as well as our partners: TNI-ValiosysLtd., ARTAL
Technologies Ltd., the IRIT software engineering team, Carole Bernon and
Valérie Camps.

References

[1] C. Bernon, V. Camps, M.-P. Gleizes, and G. Picard. Tools for self-
organizing applications engineering. In G. Di Marzo Serugendo, A. Kara-
georgos, O.F. Rana, and F. Zambonelli, editors,First International Work-
shop on Engineering Self-Organizing Applications (ESOA) at the Second
International Joint Conference on Autonomous Agents and Multi-Agents
Systems (AAMAS’03), Melbourne, Australia, July 2003.

[2] C. Bernon, M.-P. Gleizes, S. Peyruqueou, and G. Picard. Adelfe: a
methodology for adaptive multi-agent systems engineering. In P. Petta,
R. Tolksdorf, and F. Zambonelli, editors,Third International Workshop
on Engineering Societies in the Agents World (ESAW-2002), volume
2577, pages 156–169, Madrid, Spain, September 2002. Springer-Verlag
(LNAI).

[3] F. Brazier, C. Jonker, and J. Treur. Compositional design and reuse of a
generic agent model.International Journal of Cooperative Information
Systems, 9(3):171–207, 2000.

[4] G. Caire, W. Coulier, F. Garijo, J. Gomez, J. Pavon, F. Leal, P. Chainho,
P. Kearney, J. Stark, R. Evans, and P. Massonet. Agent oriented analysis
using message/uml. In M.J. Wooldridge, G. WeiSS, and P. Ciancarini,
editors,Agent-Oriented Software Engineering II, Second International
Workshop, AOSE 2001, volume 2222 ofLNCS, pages 119–135, Montreal,
Canada, May 29th 2001. Springer-Verlag.

[5] D. Capera, JP. Georgé, M-P. Gleizes, and P. Glize. The amas theory for
complex problem solving based on self-organizing cooperative agents.
In 1st International workshop on Theory and Practice of Open Compu-
tational Systems (TAPOCS) at IEEE 12th International Workshop on En-
abling Technologies: Infrastructure for Collaborative Enterprises (WET-
ICE 2003), pages 383–388. IEEE Computer Society, 9-11 June 2003.



Published in F. Bergenti, M.-P. Gleizes, and F. Zambonelli, editors, Methodologies and Software Engineering for Agent Systems, pages 157-176. Kluwer Publishing, 2004.

xx

[6] D. Capera, JP. Georgé, M-P. Gleizes, and P. Glize. Emergence of organ-
isations, emergence of functions. InFAISB’03 symposium on Adaptive
Agents and Multi-Agent Systems, April 2003.

[7] J. Castro, M. Kolp, and J. Mylopoulos. A requirements-driven devel-
opment methodology. In K.R. Dittrich, A. Geppert, and M.C. Norrie,
editors,Proceedings of the 13th International Conference on Advanced
Information Systems Engineering (CAiSE’01), volume 2068, pages 108–
123, Interlaken, Switzerland, June 2001. Springer-Verlag(LNCS).

[8] M. Cossentino. Different perspectives in designing multi-agent sys-
tem. InDesigning Multi-Agent System, AgeS’02 (Agent Technology and
Software Engineering) Workshop at NodE’02, Erfurt, Germany, October
2001.

[9] S.A. DeLoach and M. Wood. Developing multiagent systemswith agent-
tool. In C. Castelfranchi and Y. Lesperance, editors,Intelligent Agents
VII. AgentTheories Architectures and Languages, 7th International Work-
shop (ATAL 2000), volume 1986 ofLNCS, pages 46–60, Boston, MA,
USA, July 7–9 2001. Springer-Verlag.

[10] J. Gomez Sanz and R. Fuentes. Agent oriented system engineering with
ingenias. InFourth Iberoamerican Workshop on Multi-Agent Systems,
Iberagents’02, 2002.

[11] I. Jacobson, G. Booch, and J. Rumbaugh.The Unified Software Develop-
ment Process. Addison-Wesley, 1999.

[12] D. Kinny, M. Georgeff, and A. Rao. A methodology and modelling tech-
nique for systems of bdi agents. In W. Van de Velde and J. W. Perram, edi-
tors,Agents Breaking Away: Proceedings of the Seventh European Work-
shop on Modelling Autonomous Agents in a MultiAgent World, volume
1038 ofLNAI, pages 51–71. Springer-Verlag, 1996.

[13] J. Odell, H.V. Parunak, and B. Bauer. Extending uml for agents. In
Proceedings of the Agent Oriented Information Systems (AOIS) Workshop
at the 17th National Conference on Artificial Intelligence (AAAI), 2000.

[14] S. Russel and P. Norvig.Artificial Intelligence: A Modern Approach.
Prentice Hall Series, 1995.

[15] M. Wooldridge, N.R. Jennings, and D. Kinny. A methodology for agent-
oriented analysis and design. In Oren Etzioni, Jörg P. Müller, and Jef-
frey M. Bradshaw, editors,Proceedings of the 3rd International Confer-
ence on Autonomous Agents (Agents 99), pages 69–76, Seattle, WA, May
1999. ACM Press.


