Published in F. Bergenti, M.-P. Gleizes, and F. Zambonelli, editors, Methodologies and Software Engineering for Agent Systems, pages 157-176. Kluwer Publishing, 2004.

Chapter 8

THE ADELFE METHODOLOGY
Designing Adaptive Cooperative Multi-Agent Systems

Gauthier Picard

Marie-Pierre Gleizes

Institut de Recherche en Informatique de Toulouse (CNRE - IBPS)
118, route de Narbonne - 31062 Toulouse Cedex, France

{picard, gleizes} @irit.fr

Abstract This paper presents a method named ADELFE, which is led byR#teonal
Unified Process but is devoted to software engineering oftagamulti-agent
systems. ADELFE guarantees that the software is developeatding to the
AMAS theory*. We focus this presentation on the four first core workflows of
the RUP. Therefore, in the preliminary requirements anegent on what the
system has to do must be reached. During the final requirenphase, the
environment of the studied system must be defined and cleaiad. Then, in
the analysis phase, the engineer is guided to decide to ag¢iva@multi-agent
technology and to identify the agents through the systemtla@environment
models. Finally, the design workflow of ADELFE must provithe ttooperative
agent’s model and helps the developer to define the locaksideghavior. We
illustrate the methodology by applying it to a case studymetable design.

Keywords: Adaptive Multi-Agent System, Self-organization, Agenti€éhted Methodology,
Cooperation, Emergence.

1The Adaptive Multi-Agent Systems (AMAS) theory has been @velopment and applied for the last 8
years at the Research Institute in Computer Science of Tieal@RIT). See http://www.irit.fr/SMAC

Published in F. Bergenti, M.-P. Gleizes, and F. Zambonelli, editors, Methodologies and Software Engineering for Agent Systems, pages 157-176. Kluwer Publishing, 2004.

1. Introduction

Nowadays, problems to solve in computer science are begomare and
more complex (like information search on the Internet, reotdbots moving
in the real world and so on). Systems able to respond to sualtigms are
open and complex because they are incompletely specifiey atie immersed
in a dynamical environment and more importantly an a prinawn algorithm
to find a solution does not exist. This solution must builélfteccording to
interactions the system will have with its environment dgrits functioning.
Classical approaches to solve problems in such a conterbtde applied.
That led us to propose a theory called AMAS (Adaptive Mulgeht System)
theory [5], based on the use of self-organizing systems.

This theory has been successfully applied to many projaedtsl to manage
the knowledge required to assist a user during informattrewval training, an
electronic commerce tool for mediation of services, a safeatool for adap-
tive flood forecast or adaptive routing of the traffic in a ptlene network.
Obtained results led us to promote the use of self-orgagigirstems based
on the AMAS theory and to build a method for designing suclesys. They
are required both to reuse our know-how and to guide an eegith&ing an
application design. In that sense, ADELFE is a toolkit toeleg software
with emergent functionality [2]. ADELFE is not a general imad; it concerns
applications in which self-organization makes the solugmerge from the in-
teractions of its parts. It guarantees that the softwarevgldped according to
the AMAS theory. It also gives some hints to the designer ltdhim if using
the AMAS theory is relevant to build his application. The ADHE toolkit
enables the development of software with emergent funalityrand consists
of a software development process, a notation based on UMIMIA some
tools supporting the process, and the notations and ayibfaxomponents that
can be used to make the application development easier.

This paper is structured as follow: section 2 gives prinlcijmacepts of the
AMAS theory and a brief overview of the methodology and of tase study:
ETTO (Emergent Time Tabling Organization) applicationdigeillustrate the
process. Then, sections 3, 4, 5 and 6 detail respectivelyetpgrement, the
specification and the design work definitions. Section 7gssthe main tools
associated with ADELFE. Before concluding, section 8 gaésief compari-
son to some other well-known methodologies.

2. ADELFE Methodology Overview

In this section, after a brief presentation of the AMAS tlyeon which
ADELFE is based on, an overview of the ADELFE method is expaah

Published in F. Bergenti, M.-P. Gleizes, and F. Zambonelli, editors, Methodologies and Software Engineering for Agent Systems, pages 157-176. Kluwer Publishing, 2004.

The ADELFE Methodology iii

Then, the requirements for the timetabling problerase study used to illus-
trate the methodology are presented.

2.1 The AMAS Theory

The AMAS theory provides a solution to build complex systdorswvhich
classical algorithmic solutions cannot be applied [6, 5pn€erned systems
are open and complex. All the interactions the system mag hath its en-
vironment cannot be exhaustively enumerated; unpredéiateractions can
occur during the system functioning and the system musttatsaif to these
unpredictable events. The solution provided by the AMAStiés then to rid
ourselves of the global searched goal by building artifisigtems for which
the observed collective activity is not described in anynagmmposing it.
Each internal part of the system (agent) only pursues anithdil objective
and interacts with agents it knows by respecting cooperagighniques which
lead to avoid unpredictable situations (like conflict, aamency, etc.), called
Non Cooperative Situations (NCS). Faced with a NCS, a cadperagent acts
to reach a new cooperative state and permanently adaptsdteapredictable
situations while learning on others. Interactions betwagants depend on
their local view and on their ability to cooperate with eatcher. Changing
these local interactions reorganizes the system and ttargyel its global be-
havior.

Applying the AMAS theory consists in enumerating, accogdia the cur-
rent problem to solve, all the cooperative failures that @ppear during the
system functioning and then defining the actions the systerst mpply to
come back to a cooperative state.

2.2 ADELFE Overview

The ADELFE process consists in six work definitions: Pratiany Require-
ments, Final Requirements, Analysis, Design, Implementaind Tests.

Among the different activities or steps that are listed mfilgure 8.1, some
are marked with a bold font to show that they are specific tgtga multi-
agent systems. Only the four work definitions require modiftns in order to
be tailored to AMAS and the main activities are presentetiémext sections.
Other work definitions appearing in the RUP remain the sarhg [1

2This example was elaborated as a case study to compare andsliifferent methodologies and multi-
agent platforms for the ASA Group of the French Artificialdigence Association.

Published in F. Bergenti, M.-P. Gleizes, and F. Zambonelli, editors, Methodologies and Software Engineering for Agent Systems, pages 157-176. Kluwer Publishing, 2004.

I\
A15: Study the detailed architecture and the multi-agent model
S1: Determine packages
S2: Determine classes
S3: Use design-patterns
S4: Elaborate component and class diagrams
A16: Study the interaction language
A6: Characterize environment A17: Design an agent
S1: Determine entities S1: Define its skills
S2: Define context S2: Define its aptitudes
S3: Characterize environment S3: Define its interaction language
A7: Determine use cases S4: Define its world representation
S1: Draw up an inventory of the use cases S5: Define its Non Cooperative Situations
S2: |dentify cooperation failures A18: Fast prototyping
S3: Elaborate sequence diagrams A19: Complete design diagrams
A8: Elaborate Ul prototypes S1: Enhance design diagrams
A9: Validate Ul prototypes / S2: Design dynamic behaviours
LD e WD, WD,
Preliminary Final . ;
) . Analysis Design
Requirements Requirements
X
Al: Define user requirements A10: Analyze the domain
A2: Validate user requirements S1: Identify classes
A3: Define consensual requirements S2: Study interclass relationships
A4: Establish keywords set S3: Construct the preliminary class diagrams
A5: Extract limits and constraints Al1: Verify the AMAS adequacy

S1: Verify the global level AMAS adequacy
S2: Verify the local level AMAS adequacy
A12: Identify agents
S1: Study entities in the domain context
S2: Identify the potentially cooperative entities
S3: Determine agents
A13: Study interactions between entities
S1: Study the active-passive entities relationships
S2: Study the active entities relationships
A1l4: Study agents relationships

Figure 8.1. ADELFE process is described in three levalgork DefinitiongWD;), Activities
(A;) andStepqSg).

2.3 The ETTO Case Study

In order to show how a self-organizing application can beetimed us-
ing the tools linked with ADELFE, the next sections will refie the ETTO
(or Emergent Time Tabling Organization) application. Dggmon and de-
sign of the system related to ETTO are not the main objectiviis article
and more information is available in [2]. The chosen problema classical
course timetabling one in which time slots and locationsrfre) must be as-
signed to teachers and students groups in order to let thesduaeng lectures.
Usually, solutions to such a problem can be found using rdiffetechniques
like constraint-based ones or meta-heuristics techni¢gigsilated annealing,
taboo search, graph coloring, etc.) and more recentlyaheetworks, evolu-
tionary or ant algorithms. However, no real solving techeigxists when the
constraints can dynamically evolve and when the systemsnieeddapt. Be-

Published in F. Bergenti, M.-P. Gleizes, and F. Zambonelli, editors, Methodologies and Software Engineering for Agent Systems, pages 157-176. Kluwer Publishing, 2004.

The ADELFE Methodology \Y

cause this problem is not a simulation one, because it islyczomplex when
handmade or not (it belongs to the NP-complete class of enad)l and has no
universal solution, we do think that it represents the ragtample to apply the
AMAS theory. The aim is to make a solution emerge, at the mbawe of the
built MAS, from the interactions of independent parts atrhiero-level.
General requirements for this ETTO problem are the follgwigtakehold-
ers are teachers, students groups and lecture rooms. Esteryiradividually
owns some constraints that must be (at best) fulfilled. Alteabas some con-
straints about his availabilities (e.g. the days or the tgloés during which
he can teach), his capabilities (e.g. the topics he canrkcin) and the needs
he has about particular pedagogic equipments (overhegtpors, video pro-
jectors, a defined lecture room for a practical work, etc.)stédents group
must take a particular teaching made up of a certain numbgmefslots for
a certain number of teaching topics (X time slots for a topi¢r Xime slots
for a topic 2, etc.). A lecture room is equipped or not withafie equipments
(an overhead projector, a video projector or any equipnarractical works)
and can be occupied or not (e.g. during a given time slot or@ariain day).

3. Preliminary Requirements

The aim of the preliminary requirements is to define the syttebe and to
establish an agreement on the preliminary requirements.

The preliminary requirements work definition concerns tesatiption of
the system and the environment in which the system will béogleg. It con-
sists in defining what to build or what is the most appropriatstem for end-
users. End-users, clients, analysts and designers haigt thd potential re-
quirements, to define the context in which the system will &glalyed and to
list the functional and non-functional requirements (Ri¢yi #1 and #3). They
must agree on these requirements (Activity #2 and #3). Tthesigners have
to define the main concepts used to describe the applicatwbitsadomain (the
system and its environment) (Activity #4). And they must defihe limits and
constraints of the system they have to build (Activity #5).

4, Final Requirements

The aim of the final requirements is to transform this view insa-case
model, and to organize and to manage the requirementsi@nator not) and
their priorities. In fact, at this stage, the designer haddfine the function of
the studied system and to model its environment. To takedotmunt adap-
tive multi-agent systems, four steps are added to the RUgepso three are in
the Activity #6 (Characterize environment) and one is inAlogivity #7 (De-
termine Use cases). The two last activities in this workflehating to User
Interface elaboration are not described here.

Published in F. Bergenti, M.-P. Gleizes, and F. Zambonelli, editors, Methodologies and Software Engineering for Agent Systems, pages 157-176. Kluwer Publishing, 2004.

Vi

4.1 Characterization of the Environment

This activity (Activity #6 in figure 8.1) is divided into theesteps: deter-
mining the entities that are involved in the system, defirtimg context and
characterizing the environment. Entities to identify acéve or passive enti-
ties in interaction with the system.

A detailed definition of the system environment is necessargevelop
adaptive systems, which are able to respond to any changs.st#p firstly
focuses on what may be in interaction with the studied systemerms of
passive or active entities, or constraints. In our examjgiaghers, students,
the planning manager and the room manager are active sriigieause they
are able to change by themselves their own constraints grdae interact
with the system. Rooms are passive because they representges and they
cannot modify their characteristics by themselves. The (¢PRational Peda-
gogic Plan) is the database that contains all informatigiteming the courses
(maximum number of sessions per week, hour quotas for eactafmn, etc):
it is a passive entity.

In a second time, this step must define the context of thersydteequires
a characterization of data streams and interactions batemtéies and the sys-
tem. Data streams between passive entities and the systasr@essed using
collaboration diagrams. Interactions between activdieatand the system are
expressed using sequence diagrams.

In our example, two kinds of data flows between the system asdiye
entities exist: when the system consults the NPP and whesytitem consults
room constraints. When an active entity wants to interath wie system, it
may only have to change constraints (owner constraintsam roonstraints).
In the other sense, the system interacts with the activeydntidisplaying the
planning.

Finally, to characterize the environment, designers niisktabout the en-
vironment of the system to build in terms of being accessibleot, determin-
istic or not, dynamic or static and discrete or continuoubesk terms have
been reused from [14] and represent a help to later deteriinthe AMAS
technology is needed or not. This characterization mayleriab designer to
detect some special use cases to respond to environmentidretia the case
study, the environment of the system can be characteriztalas:

= Dynamic the evolution of the active entities does not depend on the
system, they are unpredictable from the point of view of §&tem;

m Accessible the environment can obtain information on the state of the
environment;

= Non-deterministic the system is not able to know what could be the
effects of its actions on active entities;

Published in F. Bergenti, M.-P. Gleizes, and F. Zambonelli, editors, Methodologies and Software Engineering for Agent Systems, pages 157-176. Kluwer Publishing, 2004.

The ADELFE Methodology vii

Modify
courses
Modify /
Teacher > conslramls _ > Launch _Courses manager
B solving

|
\ «include»

System
Initialize O
Initialize courses
constraints ~—__
—_

Visualize -7
current
result

- Cooperation
-7 Failure
Plg Possibilities
- Inmallze
rooms

/
rooms

Students group Rooms manager

Modlfy

Figure 8.2. The use cases for the ETTO problem. Associationgidaalize current result case
are potentially non cooperative: the result of the timeitaplesolution is the only cause of
cooperation failure between the users and the system, isetige that users expect the system
to satisfy their constraints.

= Continuous the number of interactions between system and entities are
infinite.

4.2 Determination of the Use Cases

The main objective of this activity, which ends the requiesits workflow, is
to clarify the different functionalities the system hasdspond to. This activity
is divided into three steps which enable to design use ctsetaborate the
associated sequence diagrams and to identify cooperaiiares. Only active
entities are implied in these use cases, which are the sestili functional
requirements set. Identification of cooperation failuresveen the system and
its environment is realized in order to help designers teaetroblems in the
sense of the AMAS theory : Non Cooperative Situations. Tdénfification
will be refined during the development process and enabkgifatation of
agents later in the process. The use cases for the timajadsbiblem are shown
in figure 8.2. Cooperation failures are represented on usesadiagrams by
dotted lines.

5. Analysis

From a multi-agent point of view, the identification of theeats must take
place in this workflow. The analysis work definition has toelep an under-
standing of the system, its structure in terms of comporamdsto know if the
AMAS theory is required.

Published in F. Bergenti, M.-P. Gleizes, and F. Zambonelli, editors, Methodologies and Software Engineering for Agent Systems, pages 157-176. Kluwer Publishing, 2004.

viii
5.1 Domain Analysis

Domain analysis (Activity #10) is a static view and an aldtom of the real
world and the linked entities. Considering separately esehcase by defining
scenarios, the designer has to divide the system intoesatifihe result of this
step is a set of entities in preliminary class diagramesacher, CourseManager,
StudentGroup, Room, RoomManager and NPP classes appear naturally as real
world entities. In a second time, we tried to determine wimdities could be
useful for our system. A board is proposed to visualize tlygamization Grid
andcell classes) and theonstraintManager class to control constraints for each
entity that owns &onstraint class instance. Cells represent intersections of
different dimensions (days, rooms, etc).

5.2 Adequacy of the AMAS Theory

This activity (Activity #10 in figure 8.1) aims to help the dgiser to decide
if the AMAS theory is adequate to solve his problem becausecdrtain ap-
plications, this kind of programming can be useless. A saftacomponent
has been developed with several criteria to study the adgqidawo levels :

= At the global level to answer the question “is a system imgletation
using AMAS needed?”

= At the local level to try to answer the question “do some congus
need to be implemented as AMAS?” i.e. is some decompositior-0
cursion useful during design?

For the case study, the decision tool clearly suggests tahegsAMAS to
design the global level. Moreover, the tool indicates tlahe entities could
be decomposed as AMAS. So, once the agents are identifiedesiigner has
to reuse the method on them, as developed below.

5.3 Agent Identification

In this activity (Activity #12), we are only interested inegs that enable
a designer to build our sort of AMAS. The designer has to deitez which
entities fit with this agent type: “cooperative agents”. Aperative agent ig-
nores the global function of the system; it only pursues dividual objective
and tries to be permanently cooperative with other agertdvied in the sys-
tem. The global function of the system is emerging (from thera level to
the multi-agent level) thanks to these cooperative intemas between agents.
An agent can also detect Non Cooperative Situations (NGB pite situations
it judges as being harmful for the interactions it possesstsothers, such as
lack of understanding, ambiguity or uselessness. This doemean that an
agent is altruistic or always helping other agents but ii$$ frying to have use-

Published in F. Bergenti, M.-P. Gleizes, and F. Zambonelli, editors, Methodologies and Software Engineering for Agent Systems, pages 157-176. Kluwer Publishing, 2004.

The ADELFE Methodology iX

ful (from its point of view) interactions with others. Thudaging up to a NCS,
an agent always acts to come back to a cooperative statect|ritfa behavior
of the collective compels the behavior of an agent. In ADE|&&signers are
given some guidelines: an entity can become an agent if ibegiaced with
“cooperation failures” and may have evolutionary représtions about itself,
other entities or about its environment and/or may haveutesiary skills.
At this stage, we identify teachers and students groups iag loeoperative
agents. All other entities are considered as objects.

54 Adequacy of the AMAS Theory at the Local Level

If the first step of adequacy to the AMAS theory indicates asjiide de-
composition, each agent has to be analyzed as a system. alseofjan agent,
Teacher Or StudentGroup, are to find different places and partners to follow or
to give each course. These goals raise the problem of ubicAgtents cannot
be at different places at different moments. Therefore, opgse to create
one agent per course for each teacher or student group. Tevih leyels are
distinguished:

= RepresentativeAgent (RA): at the highest level, it represents a teacher or a
student group within the system;

= BookingAgent (BA): at the lowest level, it is responsible for finding part-
ners and booking rooms for a RA. There are as many BA as the@&umb
of courses a teacher has to give or a student group has twfollo

The identified agents have to be added to the preliminarg clegram as
shown in figure 8.3.

attributes courses «cooperative 1 occupies R
ooms
agent»
Teacher manager
1 manages constraintg 1 N defines constraints ;‘
Courses i Constraints :
manager Constraint %* 1> manager Grid 01* Cell 11 Room
1 1 " .
manages constraints) splits timeslots
«cooperative .
attributes courses ag’;nt» occupies
Students 1
group

Figure 8.3. The main class diagram for the ETTO problem. Three classagefts appear: the
StudentsGroup, the Teacher and theBookingAgent. The two firsts are interface agents between
the system and the userBookingAgents aim to reserve time slot€¢ll of a Grid) andRooms

for Teachers or StudentsGroups in terms of theiConstraints.

Published in F. Bergenti, M.-P. Gleizes, and F. Zambonelli, editors, Methodologies and Software Engineering for Agent Systems, pages 157-176. Kluwer Publishing, 2004.

X

6. Design

The design work definition aims to formulate models that oo non func-
tional requirements and the solution domain and that pesfoathe implemen-
tation and test of the system. In ADELFE, agents being ifledtiand their
relationships being studied, designers have now to stueywy in which
the agents are going to interact (Activity #15) thanks totqgmol diagrams.
ADELFE also provides a model for designing cooperative g¢Activity
#16); designers must describe, for each type of agentiiits, ts aptitudes,
its interaction language, its world representation and\ive Cooperative Situ-
ations this agent can encounter. The global function offecsghnizing system
is not coded; designers have only to code the local beha¥itreqparts com-
posing it. An activity of fast prototyping (Activity #17) lsad on finite state
machines has been added to the process. It enables desmrersy the be-
havior of the agents being built. Then designers have to tmthe previous
defined class diagram (Activity #18). Once a class diagrdmaeced, finalized
indeed, this diagram may require the development of a $tatediagram. The
aim is to highlight the different state changes of an entibewit is interacting
with others.

Because the complete design cannot be described in this, papeonly
detail the agent design activity which does not exist in othethodologies.
Five steps compose this activity, the fourth one enableadow an agent with
classical parts such as: skills, aptitudes, an interaddoguage and world
representations and the last one is more specific to AMASYheo

6.1 Study of Interaction Languages

The result of this activity (Activity #15) is a set of protdadiagrams rep-
resenting the different interaction languages that maydeal by the agents.
Figure 8.4 shows a sample protocol between BwokingAgents having two
different roles:ExploringTeacherAgent and OccupyingTeacherAgent. The AUML
— Agent Unified Modeling Language [13] — notation is used larhe spe-
cific functionality has been added to AIP diagrams to fit to AMAS the-
ory requirements. The decision-making process correspgrd an OR or
a XOR branch is done by araptitude»-stereotyped operation attached to the
branch-node (see §6.2). For example, in figure 8.4istk@mFitting operation
is attached to the first XOR node ; i.e. depending on the esiilthis opera-
tion, theExploringTeacherAgent may either request for more information before
resuming its exploration of the grid, or negotiate in termishe constraints
which agents own.

Once the set of protocols defined, designers may assign thagents dur-
ing the new activity, as these are generic. Another podyilslto specify fully
generic protocols in which only roles are manipulated.

Published in F. Bergenti, M.-P. Gleizes, and F. Zambonelli, editors, Methodologies and Software Engineering for Agent Systems, pages 157-176. Kluwer Publishing, 2004.

The ADELFE Methodology Xi

| oo iacbasaoen |
OccupyingTeacherAgent

isRoompFitting() getinformation()
X

bookingAgentSeen(

inform()

findNextCell(

informAboutConstraints()

cceptFreeRoom 3 manageConstraints()

bookRoom()
freeRoom()

inform()

I refuseFreeRoom() jfmdNextCell()
findNextCell() m w

L

Figure 8.4. An example of protocol diagram between tBookingAgents of two different
Teachers. The first agent explores the time-table grid to find satigfglots and rooms. The
second one already occupies a room and a slot. This diagrplairexthe negotiation between
these two agents when the first agent meets the second agehefotiation may either result
on the leaving of the first agent or the booking, by the firshagend the leaving of the second
agent.

6.2 Agent Design

This activity helps the designer to fill in a generic architee given for an
agent used in the AMAS theory. ADELFE is a method which is tesdo
a specific kind of agents: cooperative ones. Therefore, #wamagent still
follows the same defined life cycle — it gets perceptions fitsm@nvironment
and autonomously uses them to decide what to do in order th &g own
goal and, finally, acts to realize the action it has decidddrbe- it has some
specific characteristics and is then composed of five paatswhl constitute
its own behavior:

m Skillsthat are knowledge about a domain enabling the agent torperfo
actions.

m Aptitudeswhich are the abilities an agent possesses to reason on its
knowledge (concerning the domain) or on its representaticime world.

= Aninteraction languagevhich enables the agent to interact and commu-
nicate with others in a direct or indirect (possibly, usitgggnvironment)
way.

m Representationsf the world that are knowledge used by an agent to
represent itself, other agents or its environment.

Published in F. Bergenti, M.-P. Gleizes, and F. Zambonelli, editors, Methodologies and Software Engineering for Agent Systems, pages 157-176. Kluwer Publishing, 2004.

Xii

= Non Cooperative Situationthat an agent must detect and process be-
cause these situations are judged “harmful” for both thenaged its
viewpoint about the collective.

Adelfe Stereotypes. To enable the developer to deal with these specific
components in the ADELFE methodology, nine stereotypes baen defined

to express how an agent is formed and/or how its behavior raagxpressed:
«cooperative agent», «characteristic», «perception», «action», «skill», «aptitude»,
«representation», «interaction» and«cooperation».

In order to modify the semantics of classes and featuresndiége on the
specificities of cooperative agents these stereotypeshairdrtiles (written in
OTScript language) are included in the OpenTool graphieaetbpment tool
linked with ADELFE. All these stereotypes, excepboperative agent», can be
applied to attributes and/or methods. All the examples appg in this section
refer to the figure 8.5.

The«cooperative agent» stereotype expresses that an entity is an agent which
has a cooperative attitude and can be used to build AMAS. &ntagill be im-

«cooper?tivs age.nt» «cooperative agent»
perception i
+ Message () p‘i'%ee‘;‘s'gge 0
- roomInfo: String ['_] rgpresenta(mn .
. y . - . ;
interaction -ownConstraints: Constraint [*]
+ getinformation () - representedPerson: Person
+ inform () skill
+ informAboutConstraints () - interpretMessage ()
+ acceptPartnership () son tather | aptitude
: gggim':)&eeea?gg;g 0 - manageBookingAgents ()
9Ag * - manageConstraints ()
representation - - manageMessages ()
u)wn!._‘;onsualm.&i:on_suam{_}* cooperation
JmakmgStates.BﬂakmgSiaie_[_} - Incompetence ()
ﬁoannersmpSIale_EattuersthSLa}a action)
- brathersConstraints: Constraint [} " - - createBookingAgent ()
=ownPartner: BookingAgent - deleteBookingAgent ()

= lastEncounteredAgents: BookingAgent [*] - addConstraints ()
- deleteConstraints ()

skill
- findNextCell () - sendMessage ()

- isProposalAcceptable ()
- interpretMessage ()

-run ()

aptitude \
'-)manageConstraints () - decide ()
- manageReservations () -act ()
- managePartners () - perceive ()

- manageMessages ()

- isRoompFitting ()
cooperation

- bookingIncompetence ()

- bookingConflict ()

- bookingUselessness ()

- messageUnproductivity ()

- partnershipConflict ()

- partnershiplncompetence ()

action - 2
“bookRoom () «cooperative agent» «cooperative agent»
- freeRoom () Teacher |— St
- signPartnership () perception perception
- cancelPartnership () representation representation
- sendMessage () skill skill
aptitude aptitude
-run () cooperation cooperation
- perceive () action action
- decide () -
-act () - perceive () - perceive ()
- decide () - decide ()
- act () -act ()

Figure 8.5. The two mairkcooperative agent»-stereotyped classeRepresentativeAgent and
BookingAgent. The first one can represent eithestadentGroup or aTeacher.

Published in F. Bergenti, M.-P. Gleizes, and F. Zambonelli, editors, Methodologies and Software Engineering for Agent Systems, pages 157-176. Kluwer Publishing, 2004.

The ADELFE Methodology Xiii

plemented using a class that will be stereotyped witlperative agent». This
class must have a run method that simulates the agent'sylife.cTherefore,

to ensure that this method does exist, an agent inheritsdrsuaperclass called
CooperativeAgent. A sample associated coherency rule is: an agent-steembtyp
class inherits (directly or not) from th@operativeAgent class. For example, in
the course timetabling applicatioBeokingAgents (BA) have been identified to
represent teacher and/or student entities. A BA's goalfisitbconvenient time
slots in the timetable. BookingAgent class can then be defined and stereotyped
with «cooperative agent». This class inherits from theooperativeAgent class and
therefore contains four methods: run, perceive, decideaahd

The«characteristic» stereotype is used to tag an intrinsic or physical property
of a cooperative agent. An attribute represents the valua mfoperty. A
method modifies or updates the value of a property. A chaistitecan be
accessed or called anytime during the life cycle. It can hls@ccessed or
called by other agents.

The «perception» stereotype expresses how an agent receive information
from the physical or social (other agents) environment.ribButes represent
data coming from the environment. Methods are means to epmtainod-
ify «perception»-stereotyped attributes. A associated coherency ruleds: “
attribute stereotyped witkperception» is necessarily private”.

The «action» stereotype is used to signal how an agent acts on the envi-
ronment during its action phase. Methods are possiblerecfiar an agent.
Attributes are parameters of an action. An agent is the oméytbat can use its
actions. A coherency rule associated is: “an attributeestiyped with«action»
is private and a method that is stereotyped usigon» is private and can only
be called during the action phase of an agent”.

The «skill» stereotype is used to tag specific knowledge enabling ant agen
to realize its own partial function. Methods represent eeag) an agent can
do. Attributes are data useful to act on the world or pararaeté a «skill»-
stereotyped method. Such an attribute or method can onlgdessed/affected
or called by the agent itself to express its autonomy of datisSkills can be
represented by a multi-agent system when they need to evAlw®herency
rule associated is: "an attribute or a method that is stgpea with«skill» is
necessarily private. Such an attribute can only be usedsyig-stereotyped
method”.

The «aptitude» stereotype expresses the ability of an agent to reason both
about knowledge and beliefs it owns. Methods express reagtimt an agent
is able to do. Attributes represent functioning data or extars of reason-
ing. A method or an attribute which is stereotyped wihtitude» can only be
accessed/affected or called by the agent itself, to expresaitonomy. Co-
herency rules associated are:

Published in F. Bergenti, M.-P. Gleizes, and F. Zambonelli, editors, Methodologies and Software Engineering for Agent Systems, pages 157-176. Kluwer Publishing, 2004.

Xiv

= An attribute or a method that is stereotyped withtitude» is necessarily
private.

= An «aptitude» attribute can only be used by a method that is also stereo-
typed with«aptitude».

= A method that is stereotyped wittaptitude» can only be called during
the decision phase of the agent.

= An «aptitude»-stereotyped method can only call methods or attributes
that are stereotyped wittperception», «representation» OF «interaction».

The«representation» stereotype is a means to indicate world representations
that are used by an agent to determine its behavior. Atetbate knowledge
units describing an agent. Methods are means to handlesmyietions: access
or alteration. Representations that may evolve can be ss@deusing a multi-
agent system. Coherency rules associated are:

= An attribute or a method which is stereotyped withpresentation» is
necessarily private.

m A «representation»-Stereotyped attribute can only be used by a method
which is stereotyped witkrepresentation» Or «aptitude».

m A «representation»-stereotyped method can only be called during the de-
cision phase of the agent.

The «interaction» stereotype tags tools that enable an agent to communicate
directly or not with others or with its environment. Methaggress the ability
an agent owns to interact with others. Attributes reprefiemtioning data or
parameters of an interaction. Interactions can be claddifi® two groups:
perceptions and actions which are also tagged with stgrestgperception»
and«action»). A coherency rule associated is: A method stereotyped kith
teraction» can only call methods stereotyped witkill» Or «interaction». More-
over, all the methods appearing on protocol diagrams awratically stereo-
typed«interaction.

The«cooperation» stereotype expresses that the social attitude of an agent is
implemented using rules allowing Non Cooperative SitueiNCS) solving.
An agent must have a set of rules (predicates) that enabtedietect NCS.
It must also have a method to enable it to solve NCS, this ndefissociates
actions with situations in order to process them. A methad #hstereotyped
with «cooperation» is always called during the decision phase of an agent and
can be of two kinds:

= A method that returns a Boolean result and tries to detect §;N¥€
parameters are stereotyped wifferception», «representations OF «skill»,

Published in F. Bergenti, M.-P. Gleizes, and F. Zambonelli, editors, Methodologies and Software Engineering for Agent Systems, pages 157-176. Kluwer Publishing, 2004.

The ADELFE Methodology XV

= A solving method (a priori, one per agent) that allows theeisgion of
one or several solving actions with each NCS.

An associated coherency rule is: “a method stereotypel seitoperation»
is private”.

Define Non Cooperative Situations. This step represents another contri-
bution of ADELFE to the design workflow. Rules which allow tagent to
have a cooperative attitude have to be defined: how to detectcaremove
NCS in order to be more cooperative. During it, designerstrilisip a ta-
ble describing each NCS encountered by each previouslyifiéeihagent. This
table contains:

m The name of the NCS,

m The state in which the agent is during the detection of NC$ $tate
can be defined by a set of values of attributes or results di@dstwhich
can be stereotyped agerception», «characteristic» O «representation»,

m The textual description of the NCS,

m The conditions describe the different elements that enakltecally de-
tect the NCS. Methods and attributes used to express conslithust be
stereotyped agperception» OF «representation» OF «skill».

m The actions linked to the NCS. The actions describe whatdkatehas
to do to remove this NCS. Methods and attributes used to sgf@eions
must be stereotypehction».

For each table, at least oreooperation»-stereotyped method must be de-
fined. This method corresponds to the NCS detection and wikbipressed
using the state and the conditions i.e. methods and atshh&t are stereo-
typed ascperception», «representation» OF «characteristic».

If several actions are possible to remove the detected N@sSmpust define
another method to choose the action to do. This method isattgred asco-
operation». If only one action is possible the definition of this secoretimod is
useless: this action will be always executed. These metivddse integrated
in the behavior of the agent.

For instance, the NCS forsookingAgent are:

m Partnership incompetencehe BA meets another BA that may be an
uninteresting partner;

m Booking incompetencéhe BA is in a cell that is uninteresting to book;

m Message unproductivenesthe BA receives a message that is not cor-
rectly addressed;

Published in F. Bergenti, M.-P. Gleizes, and F. Zambonelli, editors, Methodologies and Software Engineering for Agent Systems, pages 157-176. Kluwer Publishing, 2004.

XVi

m Partnership conflict the BA meets another BA that is interesting, but
this other BA has already a partner;

= Booking conflict the BA is in a cell that is interesting to book but this
cell is already booked;

m Booking uselessnesshe BA meets its partner: they must separate to
explore more efficiently the grid.

7. ADELFE Tools

Within ADELFE, three tools are associated with the processthe UML
/ AUML notations. The first tool is based on the OpenTool conuia soft-
ware, enriched to take into account adaptive multi-agestesy development.
The second tool is an interactive tool which supports thegss and helps
designers to follow the process and to execute associakg. tdhe last tool
is a support decision tool to help designers to decide if tMAS theory is
relevant for the current system to design. In this sectioronlg present the
two first tools.

7.1 OpenTool for ADELFE

OpenTool is a development tool, written in the OTScript laage, which
is designed and distributed by TNI-Valiosys, one of the ABELpartners.
On the one hand, OpenTool is a commercialized graphicallikmRational
Rose and supports the UML notation to model applicationgendssuring that
the produced models are valid. More specifically, it focusesinalysis and
design of software written in Java. On the other hand, Opelfitables meta-
modeling in order to design specific configurations. Thitefateature has
been used to extend OpenTool to take into account the speetfiof adaptive
multi-agent systems and thus include them into ADELFE.

The first modification added to OpenTool concerns the statiew of the
model: the class diagram. Nine stereotypes are integratewodify the se-
mantics of classes and features depending on the speeficificooperative
agents (see 86.2).

As ADELFE reuses AUML to model interactions between age®igen-
Tool was enhanced to construct AIP diagrams (see 86.1). ilffaims are an
extension to existing UML sequence diagrams that enabfeeyatit message
sending cardinalities (AND, OR or XOR). This second modifarawas en-
riched with the possibility to easily attach a protocol toagent class. More-
over, in order to simulate agents’ behaviors by using finisgesmachines,
OpenTool can automatically generate state-chart diag@nesponding to
protocols and roles within these protocols.

Published in F. Bergenti, M.-P. Gleizes, and F. Zambonelli, editors, Methodologies and Software Engineering for Agent Systems, pages 157-176. Kluwer Publishing, 2004.

The ADELFE Methodology XVii

7.2 Interactive Tools

ADELFE also provides an interactive tool that helps degigméhen follow-
ing the process established in the method [1]. In classibmct-oriented or
agent-oriented methods, this kind of tool does not realigtexEven if some
tools linked with agent-oriented methods exist (e.g. Ageal [9] for MaSE,
PTK for PASSI [8] or the INGENIAS tool [10]), they are not réah guide
and a verification tool for designers following a methodddag process. Gen-
erally, some guides like books or html texts are given (@guide to follow
the RUP is available on the web site of Rational Software}toey are not re-
ally interactive tools able to follow a project through théfetent activities of
the process. The ADELFE interactive tool is linked both véttool to verify
the AMAS adequacy and with OpenTool. It can communicate WigenTool
in order to access to different diagrams as process pragesr these two
reasons, it can be considered as a real guide that suppemnst#tion adopted
by the process and verifies the project consistency.

Each activity or step of the process is described by this aodl exempli-
fied by applying it to the ETTO problem. Within the textual degtion or the
example, some AMAS theory specific terms can be attached tosaayy in
order to be explained. That is why the interactive tool is posed of several
interfaces. The “Manager” interface indicates for theatiéit opened projects,
the different activities and steps designers have to folidven applying the
methodology. The “Work Product” interface lists the worlogucts that have
been produced or that have to be produced yet regarding tduggss when
applying the methodology. The “Description” interface kexps the different
stages (activities or steps) designers must follow to aghydynethodology pro-
cess. The “Example” interface shows how the current stagbééan applied to
ETTO. The optional “Synthesis” interface shows a globalwand an abstract
of the already made activities. And finally the optional “&dary” interface
explains the terms used in the methodology and defines theostpes that
have been added to UML.

8. Comparison with other Methodologies

ADELFE is based on object-oriented methodologies, follthesRUP (Ra-
tional Unified Process) and uses UML / AUML notations as MESEA4].
It covers the entire process of software engineering likeS8BGE, PASSI
and TROPOS [7]. And as DESIRE [3], MASSIVE, INGENIAS/MESSEG
[10], MaSE [9], PASSI, PROMETHEUS, it provides modeling gn&cal nota-
tions which are supported by tools. ADELFE is not a generaghogesuch as
GAIA [15] but it has a niche, which concerns applicationd tleguire adaptive
multi-agent system design using the AMAS theory. Therefidte MESSAGE
dedicated to telecoms applications, ADELFE gives gui@slifor the identifi-

Published in F. Bergenti, M.-P. Gleizes, and F. Zambonelli, editors, Methodologies and Software Engineering for Agent Systems, pages 157-176. Kluwer Publishing, 2004.

Xviii

cation of the application areas for which adaptive systeolsrtology is better
suited than other technologies e.g. object-oriented taolies.

Many methods, like AAll [12], TROPOS, MaSE or MESSAGE, do fmt
cus on the dynamic aspect of the software environment anteoadaptation
abilities of the software. TROPOS, like ADELFE, is concetixy dynamics.
It expresses the dynamics and openness of the applicatibe i@quirements
phases with the model of the environment and with particstétrgoals. How-
ever, it does not give guidelines to design the right agdrgkavior allowing
the adaptability of the system.

In adaptive multi-agent systems, the environment (in whieh system is
operating) is a key notion; but in a general way, the enviremtmmodeling is
not a central point in existing methodologies. In DESIRE #mvironment
is taken into account at the agent level in the “world intdoecmanagement
module”: an agent maintains and interacts with its envirentrin the same
way as with other agents. In TROPQOS, the environment modkgdsribed in
terms of actors, their goals and interdependencies. In MEES the domain
model captures some entities of the system environmenthanahteractions
with the environment are described for each role in termseokery inputs
and acquaintances, resources ownership and accessesnalhdtéisks and
actions. In AAll, the relation between the agent and theremment is taken
into account in the interaction model.

At the design level, some methodologies are dedicated tgemt architec-
ture as AAll with BDI, ADELFE with cooperative agents. In etfmethodolo-
gies such as GAIA, MESSAGE, TROPOS, the architecture ofrtigeémented
agents is not defined and it is quite open. Note that TROPGSsoffifferent
architecture styles (flat structure, pyramid, etc.) foratshitectural design
phase.

In the analysis workflow of GAIA, the agents are already id&tt and the
methodology provides nothing to realize this identificatidn TROPOS the
agents are found inside the actors’ set. In AAll, the elatimnaand refinement
of the agent model and the interaction model help the destgriefine agents.
The agent definition, which is given in MESSAGE and in ADELFEfines
the features that will be ascribed to the entities that theldper will choose
to consider as agents.

0. Conclusion

The aim of this paper was to present the ADELFE methodologichvis
a multi-agent-oriented methodology suited to adaptivetiragient systems
based on the AMAS theory. ADELFE provides a new methodologiesign a
society of agents exhibiting a coherent activity. The firstgtype is now op-
erational and can be tested on the site http://www.iRE¥ELFE. Until now

Published in F. Bergenti, M.-P. Gleizes, and F. Zambonelli, editors, Methodologies and Software Engineering for Agent Systems, pages 157-176. Kluwer Publishing, 2004.

REFERENCES XiX

ADELFE has been used or is used in several case studies:randhsystem
design, a timetabling problem, a flood forecast system @g@ss), a mechan-
ical design system (in progress) and a bioinformatics ayste progress).

Acknowledgments

We would like to thank the support of the French Ministry ofoBomy,
Finances and Industry as well as our partners: TNI-Validsygs, ARTAL
Technologies Ltd., the IRIT software engineering team,oéaBernon and
Valérie Camps.

References

[1] C. Bernon, V. Camps, M.-P. Gleizes, and G. Picard. Tools delf-
organizing applications engineering. In G. Di Marzo Sendye A. Kara-
georgos, O.F. Rana, and F. Zambonelli, editbist International Work-
shop on Engineering Self-Organizing Applications (ESQAha Second
International Joint Conference on Autonomous Agents anttitdgents
Systems (AAMAS’03)elbourne, Australia, July 2003.

[2] C. Bernon, M.-P. Gleizes, S. Peyrugueou, and G. Picardlelfa: a
methodology for adaptive multi-agent systems engineeringP. Petta,
R. Tolksdorf, and F. Zambonelli, editorghird International Workshop
on Engineering Societies in the Agents World (ESAW-2003ume
2577, pages 156-169, Madrid, Spain, September 2002. @piifeglag
(LNAI).

[3] F. Brazier, C. Jonker, and J. Treur. Compositional desigd reuse of a
generic agent modellnternational Journal of Cooperative Information
Systems9(3):171-207, 2000.

[4] G. Caire, W. Coulier, F. Garijo, J. Gomez, J. Pavon, F.ILBaChainho,
P. Kearney, J. Stark, R. Evans, and P. Massonet. Agent edamtalysis
using message/uml. In M.J. Wooldridge, G. WeiSS, and P.daim,
editors, Agent-Oriented Software Engineering Il, Second Inteorsl
Workshop, AOSE 200%olume 2222 of NCS pages 119-135, Montreal,
Canada, May 29th 2001. Springer-Verlag.

[5] D. Capera, JP. Georgé, M-P. Gleizes, and P. Glize. Thesdhery for
complex problem solving based on self-organizing cooperagents.
In 1st International workshop on Theory and Practice of Opem@o-
tational Systems (TAPOCS) at IEEE 12th International Waokson En-
abling Technologies: Infrastructure for Collaborative térprises (WET-
ICE 2003) pages 383-388. IEEE Computer Society, 9-11 June 2003.

Published in F. Bergenti, M.-P. Gleizes, and F. Zambonelli, editors, Methodologies and Software Engineering for Agent Systems, pages 157-176. Kluwer Publishing, 2004.

XX

[6] D. Capera, JP. Georgé, M-P. Gleizes, and P. Glize. Emeggef organ-
isations, emergence of functions. FAISB’03 symposium on Adaptive
Agents and Multi-Agent Systendgpril 2003.

[7] J. Castro, M. Kolp, and J. Mylopoulos. A requirements/ein devel-
opment methodology. In K.R. Dittrich, A. Geppert, and M.CorNe,
editors,Proceedings of the 13th International Conference on Adgdnc
Information Systems Engineering (CAISE'0ddlume 2068, pages 108—
123, Interlaken, Switzerland, June 2001. Springer-VeflddCS).

[8] M. Cossentino. Different perspectives in designing tirafient sys-
tem. InDesigning Multi-Agent System, AgeS’02 (Agent Technolagy a
Software Engineering) Workshop at NodE' @& furt, Germany, October
2001.

[9] S.A. DelLoach and M. Wood. Developing multiagent systevite agent-
tool. In C. Castelfranchi and Y. Lesperance, editdngelligent Agents
VII. AgentTheories Architectures and Languages, 7th hatonal Work-
shop (ATAL 200Q)volume 1986 ofLNCS pages 46—60, Boston, MA,
USA, July 7-9 2001. Springer-Verlag.

[10] J. Gomez Sanz and R. Fuentes. Agent oriented systemeamrgig with
ingenias. InFourth Iberoamerican Workshop on Multi-Agent Systems,
Iberagents’02 2002.

[11] I. Jacobson, G. Booch, and J. Rumbaughe Unified Software Develop-
ment ProcessAddison-Wesley, 1999.

[12] D. Kinny, M. Georgeff, and A. Rao. A methodology and miidg tech-
nique for systems of bdi agents. In W. Van de Velde and J. WaRgredi-
tors,Agents Breaking Away: Proceedings of the Seventh Europesaa W
shop on Modelling Autonomous Agents in a MultiAgent Wortdume
1038 ofLNAI, pages 51-71. Springer-Verlag, 1996.

[13] J. Odell, H.V. Parunak, and B. Bauer. Extending uml fgemts. In
Proceedings of the Agent Oriented Information Systems$A@brkshop
at the 17th National Conference on Atrtificial Intelligen@eAAl), 2000.

[14] S. Russel and P. NorvigArtificial Intelligence: A Modern Approach
Prentice Hall Series, 1995.

[15] M. Wooldridge, N.R. Jennings, and D. Kinny. A methodpjdor agent-
oriented analysis and design. In Oren Etzioni, Jérg P. Mided Jef-
frey M. Bradshaw, editord2roceedings of the 3rd International Confer-
ence on Autonomous Agents (Agents payes 69-76, Seattle, WA, May
1999. ACM Press.

