Intercession d'enchères pour plus d'initiative mixte dans les algorithmes décentralisés d'allocation de tâches multi-robots basés sur le consensus

Présentation JFSMA'24

8/11/24

Victor Guillet, Christophe Grand, Charles Lesire, Gauthier Picard

Presentation Outline

Research objectives and motivating case

1. Research objectives and motivating case

2. Problem definition

-) _______ _____

3. Proposed

approach: Bid

Intercession

4. Results Overview

Research Objectives

- How to distribute a mission/tasks to the various agents in a (heterogeneous) multi-robot system, ensuring that they are carried out collectively
- Synchronising the execution of each robot's actions
- Taking account of <u>operational constraints</u> such as loss of communication
- <u>Link with the operator</u> in drawing up the plan and repair strategies

Example: Search & Rescue

Tasks

.

•

https://rrl.robocup.org/

Why consider multi-robot systems?

- Limitations of human responders: Limited accessibility in hazardous areas.
 - Time constraints and human endurance.
 - Risks to human lives in unstable environments.

Advantages of robotic multi-agent systems :
Increased efficiency in covering vast areas.
24/7 operational capability without fatigue.
Minimised risk to human responders.

Problem Definition

1. Research objectives and motivating case

2. Problem definition

3. Proposed

Intercession

approach: Bid

4. Results Overview

Multi-Robot Task Allocation (MRTA)

Finding the answer to the question:

"Who does what, when, and in what order?"

General optimization goals:

Meet task requirements while maximising performance and optimising resource utilization

- Meet tasks requirements
- Maximise the rate at which tasks are undertaken
- Minimise the overall cost of task completion to the group

Market-Based Approaches

X

> Inspired from real world auction mechanisms

Market-Based Approaches

> Inspired from real world auction mechanisms

Market-Based Approaches

> Inspired from real world auction mechanisms

Centralized Auction-Based Methods vs Consensus-Based Methods

Centralized

Decentralized

Market Based

Auctions

Centralized

Decentralized

F. Quinton, C. Grand, and C. Lesire, Market Approaches to the Multi-Robot Task Allocation Problem: A Systematic Mapping and Survey

Consensus-Based Algorithms

H.-L. Choi, L. Brunet, and J. P. How, Consensus-Based Decentralized Auctions for Robust Task Allocation, IEEE Transactions on Robotics, vol. 25, no. 4

Bid Intercession

1. Motivating case

2. Problem definition

-)_______-

3. Proposed

approach: Bid

Intercession

4. Results Overview

"intercession"

Noun The action of <u>intervening</u> on behalf of another.

The action of <u>bidding</u> on behalf of another

- Bid intercession involves imposing bids on target agents in an auction process through prioritization mechanisms.
- This allows for influencing auction outcomes without altering the fundamental allocation protocol.
- Additional rules introduced in the Task Evaluation Problem

Bid intercession

- Override tasks evaluations during the auction process
 - Leverage different scoring scheme to evaluate tasks
 - Introduces an additional mechanism based on priority levels to determine which task evaluation to adopt during the auction process
- Does not impact convergence properties of the underlying algorithms
- Allows for various degrees of control over the allocation process

"[...] whatever knowledge each agent scoring scheme is based on [...], the conflict resolution process of (CBBA) is insensitive to the details of each agent's scoring scheme."

H.-L. Choi, L. Brunet, and J. P. How, Consensus-Based Decentralized Auctions for Robust Task Allocation

Robust to communication failure

Results Overview

1. Research objectives and motivating case

2. Problem definition

3. Proposed

approach: Bid

4. Results

Overview

... • •

Intercession

Technical work

- MAAF: Multi-Agent Allocation Framework
 - ROS2 based
 - Development and Test framework for multi-agent allocation protocols
 - Support both simulations and real operations
 - Includes analysis and visualisation tools for run logs

Experimental setup

Experimental setup:

- 4 agents (2 types: types A or B)
- 50 GOTO followed by: ACTION tasks (types A or B) or nothing
- Task released gradually from closest to furthest from start

Robots:

 Only aware of GOTO tasks locations and <u>observed</u> ACTION tasks (location and nature)

Operator:

 Same as above + aware of <u>what ACTION tasks</u> are found <u>at which GOTO locations</u>

<u>Goal:</u> Use intercession to **inject operator knowledge into the solution** to ensure robots take on GOTO tasks followed by ACTION tasks they can complete

Evaluation metrics:

- % matched allocation
- Step count
- GOTO tardiness (from release)
- ACTION tardiness (from release)
- Message count

Results

		Ţ	Ţ	Ţ	Ţ		Ţ
Table 1.	Average va	lues (and standa	rd deviation) ove	r 10 instances of per	formance metrics for e	ach configuration	and algorithm
$\overline{a_1}, \overline{a_2} \ \overline{s_1}, \overline{s_2}$	Algorithm	Total step count	Total tardiness	Total goto tardiness	Total action tardiness	% matched alloc.	Total msg count
25, 25 2, 2	CBAA	756.8 (±7.6%)	3263.7 (±16.3%)	2460.5 (±26.1%)	803.2 (±54.1%)	50.4 (±11.3%)	1449.9 (±2.0%)
25, 25 2, 2	I-CBAA	538.0 (±11.1%)	1795.0 (±19.4%)	1785.7 (±19.4%)	9.3 (±141.4%)	98.2 (±2.6%)	1243.1 (±1.6%)
25, 25 2, 2	CBAA ⁺	487.6 (±6.6%)	1823.3 (±12.0%)	1410.2 (±11.3%)	413.1 (±40.9%)	52.6 (±12.3%)	2393.5 (±2.8%)
25, 25 2, 2	I-CBAA ⁺	423.2 (±5.8%)	1416.8 (±10.3%)	1353.0 (±9.8%)	63.8 (±53.5%)	89.2 (±2.8%)	2100.7 (±1.8%)
20, 20 2, 2	CBAA	611.2 (±9.5%)	2584.3 (±16.8%)	2103.1 (±20.7%)	481.2 (±28.4%)	51.8 (±11.4%)	1319.9 (±2.0%)
20, 20 2, 2	I-CBAA	519.6 (±7.7%)	1814.5 (±11.7%)	1806.2 (±11.6%)	8.3 (±173.7%)	98.2 (±2.4%)	1136.2 (±1.5%)
20, 20 2, 2	CBAA+	452.0 (±11.9%)	1730.7 (±23.1%)	1221.1 (±11.9%)	509.6 (±55.5%)	45.2 (±17.8%)	2165.6 (±2.0%)
20, 20 2, 2	I-CBAA+	406.8 (±6.7%)	$1415.9 \scriptstyle (\pm 10.9\%)$	1332.6 (±10.0%)	83.3 (±54.8%)	88.5 (±4.7%)	1890.8 (±3.0%)
35, 5 2, 2	CBAA	710.4 (±11.6%)	2929.0 (±14.3%)	2085.6 (±13.5%)	843.4 (±42.7%)	38.5 (±25.3%)	1345.1 (±1.6%)
35, 5 2, 2	I-CBAA	660.0 (±12.1%)	2321.0 (±18.4%)	2022.7 (±18.1%)	298.3 (±42.0%)	66.2 (±13.2%)	1173.5 (±1.2%)
35, 5 2, 2	CBAA+	467.2 (±10.1%)	1656.1 (±21.3%)	1200.9 (±20.3%)	455.2 (±56.0%)	39.8 (±18.9%)	2141.6 (±4.3%)
35, 5 2, 2	I-CBAA ⁺	459.2 (±6.5%)	1500.8 (±17.1%)	1279.9 (±15.2%)	220.9 (±43.3%)	69.8 (±14.1%)	1884.3 (±1.8%)
39, 1 1, 3	CBAA	1427.2 (±12.5%)	5810.2 (±10.8%)	1939.7 (±17.6%)	3870.5 (±19.4%)	7.5 (±66.7%)	1299.1 (±1.3%)
39, 1 1, 3	I-CBAA	1526.0 (±11.6%)	5805.8 (±17.2%)	2506.5 (±18.8%)	3299.3 (±33.5%)	23.8 (±24.9%)	1255.0 (±0.6%)
39, 1 1, 3	CBAA+	834.3 (±12.9%)	3080.1 (±12.4%)	1045.4 (±14.1%)	2034.7 (±19.8%)	7.0 (±32.8%)	1987.4 (±1.6%)
39, 1 1, 3	I-CBAA+	809.2 (±12.4%)	3055.8 (±12.2%)	1610.5 (±17.4%)	1445.3 (±33.3%)	25.8 (±22.0%)	1981.9 (±2.3%)

Conclusions

- Novel intercession mechanism to forster human intervention within consensus-based task allocation mechanisms
- Small overhead and minimal modification of the base algorithms
- Maintain the **convergence** properties
- Validation using ROS-based simulation

Future works

- Extension of other consensus-based algorithms (e.g. CBBA)
- Group formation and group intercession
- Study the impact of several levels of interventionism
- ROS implementation: towards deployment on real robots
- Envisioned scenarios CoHoMa challenge

Questions?

Results

