
DIONYSUS:
Towards Query-aware Distributed
Processing of RDF Graph Streams

Syed Gillani, Gauthier Picard, Frederique Laforest

Laboratoire Hubert Curien & Institute Mines St-Etienne, France

GraphQ 2016

[Outline]

• Stream processing in general

• Semantic-enabled stream processing (RDF stream processing)

• Issues and challenges for RDF stream processing

• Expectations from DIONYSUS

• Functional Layers of DIONYSUS

[The Data Deluge]

• More than 3000 Exabytes (billions GBs) created in 2015 alone
 - Increased from 150 Exabytes in 2005

• Many new sources of data become available
 - Sensors, mobile devices
 - Web feeds, social networks
 - Surveillance video and audio
 - Knowledge Bases
 - ……………….

• How can we make sense of all data
 - Most of the data is not interesting
 - New data supersedes old data
 - Challenge is not only storage but processing

[Stream Processing to the Rescue!]

- Process data streams on the fly without storage

• Stream data rates can be high
 - Volume, type, frequency can vary
 - High resource requirement for processing

• Processing streams have real-time requirement
 - Latency of data processing matters
 - Limited amount of available memory
 - MUST be able to react to the events as they occur (Complex Event Processing)

- Use cases: Power management in Smart Grid, Traffic management, Social
network analysis, fraud detection etc,.

[Stream Processing is it enough?]

- Heterogeneity of sources, multiple Schemas, materialisation of implicit Knowledge

Query
Query Instances

[RDF Stream Processing]

• Utilising Semantic Web Technologies
 - Facilitating data integration by using machine processable descriptions
 to reconcile heterogeneities (e.g., Semantic Sensor Web)
 - Handle diversity with schema-less Model
 - Graph-structured data model (RDF)

• Stream Reasoning
 - Performing materialisation of implicit knowledge (e.g., inference using ontologies)
 - Utilising static knowledge-bases (Linked-data Cloud) to extract contextual knowledge

[RDF Stream Processing]

Query
Query Instances

Ontologies Knowledge-Bases (e.g., DBpedia)

Ontologies

[RDF Stream Processing]
• RDF Stream Processing is expensive
 - Graph Pattern Matching, an NP-complete problem

<��������> <�������> <���	��
>
[<��, �� ,��> ….. <��, �� ,��>] [] ��

[<��, �� ,��> ….. <��, �� ,��>] [] �	

��

.

.

.

.

.

.

[<��, � , b> …..] [] �� […..<��, 	��
> …..] [] �� [<���������> …..] [] ��.

Match!!

Query PatternAn RDF Graph Stream

RDF Graph Stream

[RDF Stream Processing]

• Existing Solutions
 - Rely-on centralised processing
 - Triple stream model, which ignores the graph nature of RDF

 - Extended for DSMS models, black-box approach

 - Re-evalution based query processing

 - No support to gather archives of streams

• Vision/Expectations (DIONYUSIS)
 - Scale-out solution
 - Handle the distributed nature of stream sources
 - Incremental indexing and incremental query processing
 - State-full operators to enable Semantic Complex Event Processing

[Data Distribution]

• Can we learn anything from static solutions

 - Hash-based clustering [Zeng et.al 2013], graph structure of RDF data?
 - Semantic Hash-based clustering [Lee et.al 2013], multivalued predicates?

• Distribution for RDF data is not trivial and requires extensive preprocessing

 • Reverse paradigm for stream data distribution
 - Data is not known in advance for distribution analysis
 - New sources are added dynamically and old sources provide data
 at variable velocities

 - Variable query loads

[Data Distribution for RDF Graph Streams]

• Relying on ontologies and use cases
 - Ontology modularisation [Aquin et al, 2011] [Bhatt et al, 2012] [Gillani et al, 2016]

 - Given a set of ontologies O defined on a set of streams S , produce a set of
 common basic graph patterns (CBGPs)

 - Each CBGP contains information about a coherent subtopic within an ontology

Archipelago of CBGP-Stores

Alive Island CBGP-Stores Deceased island of CBGP-StoresStatic Island of CBGP-Stores

Data Stream Sources
Archived AnalysisStatic Knowledge-bases

[CBGP Stores and Query Processing]

• CBGP Stores
 - Aggregating common linked-concepts within a single CBGP store
 - Each CBGP stores has customised optimisation, light-weight adaptive indexing

 - Reducing the network traffic and load at federation level

 - Acts as data filter, only relevant data is stored from a set of sources

 - Divided into three flavours: static, alive and deceased

• A collection of CBGP stores is abstracted under an Island,
 each island is assigned to a set of query-conductors

[Query Processing via Query Conductors]

CEP
Optimiser

Stream
Optimiser

Analytical
Optimiser

Query Conductors

Archipelago of CBGP-Stores

Alive Island CBGP-Stores Deceased island of CBGP-Stores

Bolts Bolts

Static Island of CBGP-Stores

Data Stream Sources

• Query Conductors
 - Determines the type of the registered query graphs: analytical query over archived data,
 streaming query, sequence-based query (CEP)

 - Divide the query graph into a set of subgraph queries, share loads, and orchestrates
 the query execution

CEP
Optimiser

Stream
Optimiser

Analytical
Optimiser

Query Conductors

Apps

Archipelago of CBGP-Stores

Alive Island CBGP-Stores Deceased island of CBGP-Stores

Exact Query Graphs (EQGs)

Bolts Bolts

Clients Visulisation

Static Island of CBGP-Stores

Data Stream Sources

[Functional Layers of DIONYUSIS]

[Query Optimisations for DIONYUSIS]
• Analytical Queries: Traditionally
 - Compute each pattern against all the available data stores and the results are joined
 at the server
 - Evaluating each pattern in nested-loop-join fashion: substituting the results from one
 pattern to another

Deceased CBGP-store-1Static CBGP-store-2

Query Conductor

⨝?l ?l

[Query Optimisations for DIONYUSIS]
• Streaming Queries
 - Query is distributed into set of subquery graphs each is hosted by a CBGP store
 - The matches are computed locally and window operators is executed at query
 conductor level

Alive CBGP-store-1Alive CBGP-store-2

Query Conductor

⨝?l ?l

[Range 2s]

[Query Optimisations for DIONYUSIS]
• Sequence-based Query
 - Query is distributed into set of subquery graphs each is hosted by a CBGP store

 - The matches are computed locally and window operators is executed at query conductor level

Query Conductor

⨝?l ?l
SEQ (A,B)

Alive CBGP-store-2Alive CBGP-store-1

[Conclusion]

• Addressing the requirements of RDF graph streams:
 - Scalability, state management, distribution of data sources

• One query interface to support:
 - Continuous and distributed streaming queries
 - Queries over archived streams
 - Temporal sequential queries

• Future Work:
 - Integration of separate layers of the system.
 - Benchmarking distributed RDF graph streams

[Questions?]

