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[Outline]

✓ Knowledge Graph (KG) Processing in general 

✓ KG Streams’ Models 

✓ Issues and Challengers for Processing KG Streams  

✓ Pre-processing and pruning of KG events 

✓ Event-based KG Stream Processing 

✓ Incremental KG Stream Processing 

✓ Empirical Evaluation 



[The Data Deluge]

• More than 3000 Exabytes (billions GBs) created in 2015 alone 
   - Increased from 150 Exabytes in 2005

• Many new sources of data become available 
✓ Sensors, mobile devices 
✓ Web feeds, social networks 
✓ Surveillance video and audio 
✓ Knowledge Bases 

       ……………….

• Making sense of all data: Stream Processing to the Rescue 
✓ Process data streams on the fly without storage 
✓ Limited amount of available memory 
✓ Latency of data processing matters



[Stream Processing: is it enough?]

• Nature of the Streams 
✓ Heterogeneous stream emanating from multiple sources 
✓ Extracting the contextual Knowledge 
✓ Seamless Integration of streams

• Knowledge Graph Data Model
  
✓  Lifting streaming data to a semantic model 
✓  Schema-less model allows integration of heterogeneous streams  
✓  Integration of external sources using Link Data collections 
✓  New breed of applications 

    



[Knowledge Graph Model]

✓ Set of entities and directed relations between them 
✓ Constraints on type and attributes of the entities and their relations 
• For RDF model:  
✓Entities are IRIs, Blank Nodes, Literals (only for outer edges) 
✓Relations are IRI’s 
✓Set of triples (subject, predicate, object)
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[Knowledge Graph Model]
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✓ NP-Complete Problem 
✓ Require sophisticated Indexing 



[Adding Temporal Dynamics to KGs]

Event/batch-based Model
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[KG Stream Processing]
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[KG Stream Processing: Issues and Challenges]

• Traditional Static/dynamic Solutions 
✓ Graph-based storage and exploration-based querying 
✓  Tabular-based storage and join-based querying   
✓  Re-evaluation of computed query matches 

   

• Both techniques utilised index-store-query model 
✓ Expensive indexing to accelerate query processing (O(n^4))  

✓ Clustered B-+ Trees 
   

Require on-the-fly KG stream processing 

✓ Avoid expensive indexing 
✓ Light-weight data structure 
✓ Incremental computation of matches 



[What We Offer!!]

✓ Continuous GPM over both Event and Incremental Model for 

Tumbling Windows 

✓ Query-based graph pruning techniques for KG events 

✓ Hybrid join-and-explore matching technique to avoid expensive 

indexing  

✓ Light-weight multi-bidirectional data structure to comply with 

streaming settings 

✓ Automata-based executional framework for processing of KG 

events  



  Event-based  
Continuous Graph 
Pattern Matching 



[Pruning KG Events]

Queries are register beforehand!!

Utilise structural attributes of query graph for pruning 
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[Pruning KG Events]
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[TP-Join Automata]
✓Automate an old friend of pattern matching 
✓Percolation property for on-the-fly processing 
✓Map the set of triple patterns (tp) to automaton states 
✓Triple patterns’ join conditions as transition predicates 
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[TP-Join Automata]
✓Hybrid Join-and-explore 
✓Join the tables for the dependent triple patterns 
✓Transit to the next state if join produces results 
✓Insert the resulted matches in graph-structures (multimaps) 
✓Explore the graph to produce the matches without creating/using indices 
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[TP-Join Automata]

• On-the-fly execution 

• Each step reduces the search space by removes the “dangling” triples 

• Support of start, chain, cyclic queries without incurring the cost of indexing 

• Can extend the automata for expressive operators, such as kleen-+, negation 

• Process joins only if there is an enough evidence of matching a KG event 



  Incremental 
Continuous Graph 
Pattern Matching 



[Incremental CGPM]

• Same approach for pruning events/graph updates 

• Extend TP-Join Algorithm: 

✓incrementally locate new matches 

✓efficiently update the old matches 

• Matches emerge slowly during incremental evaluation 

• Find partial matches for each update and incrementally process remaining 

matches 

• Lazy Evaluation of joins



[Incremental CGPM] tp1
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[Incremental CGPM]

• Lazy Evaluation: 

✓Defer the joining process 

✓Make sure all the triple pattern has corresponding triples 

✓Store the matched results in Final Tables (FT) for a defined window 

• Utilise final tables to incrementally match the new updates 

• Lazy evaluation save useless computations 

• Previously matched results are store in Final Tables: 

✓Incremental CGPM produces the same result as that of re-evaluation  



[Empirical Evaluation]

✓How the system performs as compared to traditionally Index-based solutions 

✓How the system performs as compared to re-evaluation based systems 



[Empirical Evaluation]

• Metrics Event-based Evaluation: 

✓Varying the number of events and then triples within each event 

✓Window size would not effect the performance (no aggregate operators 

used) 

• Metrics Incremental Evaluation: 

✓Varying the window size (w) and evaluate events within the tumbling window 

✓Size of the window has direct impact on the performance



[Empirical Evaluation]

• Datasets: 
✓NY Taxi dataset with 50 million taxi related events, each event  
containing 24 triples  
✓Social Network Benchmark (SNB) containing 50 million triples

• Queries: 

✓ Three NY Taxi data queries containing start, chain and combination 

of both 

✓Three SNB queries from the use cases described in the benchmark 

 (star, chain and cyclic) 

✓ Three LsBench Queries customised for SNB dataset (Used for RSP)
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[Event-based Evaluation (NY-Taxi)(NY-Q1)]

✓CQELS: RDF stream processing system 

✓Jena,Sesame,RDFox: In-memory triple stores and static RDF data processing 

✓Set-sized sized events 
✓Optimisation has not much  

of effect 



[Event-based Evaluation (SNB-Q1)]
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✓Variable sized events 
✓E-CGPM shows considerable  
   performance improvements



[Event-based Evaluation (SNB-Q1)]
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[Incremental Evaluation (SNB-Q1)]
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✓Incremental Vs re-evaluation techniques  
✓Linear response with the increase in the window size



[Incremental Evaluation (Ls-Bench)]
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✓CQELS RSP system performs poorly for large datasets 
✓Lazy Evaluation pays off with less number of join operations



[Conclusion]

• Expensive indexing-based solutions add quite a lot of latency for KG streams 

• By leveraging the hybrid join-and-explore technique such latency can be 

reduced 

• on-the-fly processing go KG streams requires customised data structures 

• Incremental Evaluation outperforms re-evaluation techniques by an order of 

magnitude 



[Questions?]

Contact: Syed Gillani  
syed.gillani@univ-st-etienne.fr

mailto:syed.gillani@univ-st-etienne.fr

