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'Qutline]

v Knowledge Graph (KG) Processing in general

v KG Streams’ Models

v Issues and Challengers for Processing KG Streams
v Pre-processing and pruning of KG events

v Event-based KG Stream Processing

v Incremental KG Stream Processing

v Empirical Evaluation



' The Data Deluge]

* More than 3000 Exabytes (billions GBs) created in 2015 alone
- Increased from 150 Exabytes in 2005

 Many new sources of data become available

v' Sensors, mobile devices

v Web feeds, social networks
v Surveillance video and audio
v Knowledge Bases

* Making sense of all data: Stream Processing to the Rescue
v Process data streams on the fly without storage

v Limited amount of available memory

v Latency of data processing matters




 Stream Processing: is it enough?]

 Nature of the Streams

v Heterogeneous stream emanating from multiple sources
v Extracting the contextual Knowledge
v Seamless Integration of streams

 Knowledge Graph Data Model

v Lifting streaming data to a semantic model
v Schema-less model allows integration of heterogeneous streams

v Integration of external sources using Link Data collections
v New breed of applications




' Knowledge Graph Model |
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v Set of entities and directed relations between them
v Constraints on type and attributes of the entities and their relations
* For RDF model:

v Entities are IRIs, Blank Nodes, Literals (only for outer edges)

v Relations are |IRl’s

v Set of triples (subject, predicate, object)



' Knowledge Graph Model |

KG Query Graph
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Pattern Matching/Subgraph Isomorphism (homomorphism)

v NP-Complete Problem
v Require sophisticated Indexing



'Adding Temporal Dynamics to KGs]|

Event/batch-based Model
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KG Stream Processing
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' KG Stream Processing: Issues and Challenges]

e Traditional Static/dynamic Solutions

v Graph-based storage and exploration-based querying
v Tabular-based storage and join-based querying
v Re-evaluation of computed query matches

* Both technigues utilised index-store-query model
v Expensive indexing to accelerate query processing (O(nN4))
v Clustered B-+ Trees

Require on-the-fly KG stream processing

v Avoid expensive indexing
v Light-weight data structure
v Incremental computation of matches



' What We Offer!!]

v Continuous GPM over both Event and Incremental Model for
Tumbling Windows

v Query-based graph pruning technigues for KG events

v Hybrid join-and-explore matching technique to avoid expensive
iIndexing

v Light-weight multi-bidirectional data structure to comply with
streaming settings

v Automata-based executional framework for processing of KG

events



Event-based
Continuous Graph
Pattern Matching

ProBLEM 1 (EVENT-BASED CGPM). Given (i) a query graph
Q, (ii) a Ka stream G, and (iii) a matching function M, Event-based
CGPM amounts to continuously compute the function M (Q, (G*, 7;))
for each event within the Kc streams.



' Pruning KG Events]

OBSERVATION 1. Givena query graph Q) and aKc event (G*, T;),
the number of edges |Eq| € Q is less than or equal to the number

of edges |E*| € G".

Queries are register beforehand!!

Utilise structural attributes of query graph for pruning
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' Pruning KG Events]
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'TP-Join Automata]

v Automate an old friend of pattern matching

v Percolation property for on-the-fly processing

v Map the set of triple patterns (tp) to automaton states
Y Triple patterns’ join conditions as transition predicates
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| TP-Join Automata |

v Hybrid Join-and-explore

v Join the tables for the dependent triple patterns

Y Transit to the next state if join produces results

v Insert the resulted matches in graph-structures (multimaps)

v Explore the graph to produce the matches without creating/using indices
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'TP-Join Automata]

e On-the-fly execution

e Each step reduces the search space by removes the "dangling” triples

e Support of start, chain, cyclic queries without incurring the cost of indexing

e Can extend the automata for expressive operators, such as kleen-+, negation

* Process joins only if there is an enough evidence of matching a KG event



Incremental
Continuous Graph
Pattern Matching

PrROBLEM 2 (INCREMENTAL CGPM). Given (i) a query graph
Q, (ii) an evolving K G, and (AG"*, 7;) as updates to G, such that
the updates conformto a stream G = {(AG L 1)y ..., (AG™, ) }
and (iii) a matching function M, Incremental CGPM amounts to
continuously compute the changes AM; = M(Q, (AGi, Ti)) to
the matches such that,

i—1 1—1
k=0 k=0

where operator & incrementally applies changes to the matched
graphs.



' Incremental CGPM |

e Same approach for pruning events/graph updates

e Extend TP-Join Algorithm:
vYincrementally locate new matches
v efficiently update the old matches
e Matches emerge slowly during incremental evaluation
e Find partial matches for each update and incrementally process remaining
matches

e | azy Evaluation of joins



' Incremental CGPM |
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' Incremental CGPM |

¢ | azy Evaluation:
v Defer the joining process
v Make sure all the triple pattern has corresponding triples
v Store the matched results in Final Tables (FT) for a defined window
e Utilise final tables to incrementally match the new updates
¢ |_azy evaluation save useless computations
¢ Previously matched results are store in Final Tables:

Y Incremental CGPM produces the same result as that of re-evaluation



[Empirical Evaluation |

v'How the system performs as compared to traditionally Index-based solutions

v’ How the system performs as compared to re-evaluation based systems



[Empirical Evaluation ]

e Metrics Event-based Evaluation:
v Varying the number of events and then triples within each event
v Window size would not effect the performance (no aggregate operators
used)
e Metrics Incremental Evaluation:
v Varying the window size (w) and evaluate events within the tumbling window

v Size of the window has direct impact on the performance



[Empirical Evaluation ]

e Datasets:

v NY Taxi dataset with 50 million taxi related events, each event
containing 24 triples

v Social Network Benchmark (SNB) containing 50 million triples

* Queries:
v Three NY Taxi data queries containing start, chain and combination
of both
v Three SNB queries from the use cases described in the benchmark
(star, chain and cyclic)

v Three LsBench Queries customised for SNB dataset (Used for RSP)



| Event-based Evaluation (NY-Taxi)(NY-Q1) |
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v CQELS: RDF stream processing system

vJena,Sesame,RDFox: In-memory triple stores and static RDF data processing



| Event-based Evaluation (SNB-Q1) ]
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Table 2: Dataset distribution for large-scale CGPM, Min and Max
describes the range of no. of triples for each event of SNB streams

/Varlab|e Slzed eveﬂtS Dataset(streams) Min (triples/event) Max (triples/event)
: 500P 783 148K
v E-CGPM shows considerable LKP 2340 397K
i 5KP 217K 301K
performance improvements o <ok S0sK
20KP 115K 1.9M

30KP 145K 3.2M




| Event-based Evaluation (SNB-Q1) ]
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| Incremental Evaluation (SNB-Q1) ]
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Y Incremental Vs re-evaluation technigues
v Linear response with the increase in the window size



| Incremental Evaluation (Ls-Bench) ]
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v CQELS RSP system performs poorly for large datasets
v Lazy Evaluation pays off with less number of join operations



' Conclusion ]

e Expensive indexing-based solutions add quite a lot of latency for KG streams

e By leveraging the hybrid join-and-explore technique such latency can be
reduced

e on-the-fly processing go KG streams requires customised data structures

e Incremental Evaluation outperforms re-evaluation techniques by an order of

magnitude



[Questions?]

Contact: Syed Gillani
syed.gillani@univ-st-etienne.fr
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