
Continuous Graph Pattern Matching Over
Knowledge Graph Streams

Syed Gillani, Gauthier Picard, Frederique Laforest

Laboratoire Hubert Curien & Institute Mines St-Etienne, France

DEBS 2016

[Outline]

✓ Knowledge Graph (KG) Processing in general

✓ KG Streams’ Models

✓ Issues and Challengers for Processing KG Streams

✓ Pre-processing and pruning of KG events

✓ Event-based KG Stream Processing

✓ Incremental KG Stream Processing

✓ Empirical Evaluation

[The Data Deluge]

• More than 3000 Exabytes (billions GBs) created in 2015 alone
 - Increased from 150 Exabytes in 2005

• Many new sources of data become available
✓ Sensors, mobile devices
✓ Web feeds, social networks
✓ Surveillance video and audio
✓ Knowledge Bases

 ……………….

• Making sense of all data: Stream Processing to the Rescue
✓ Process data streams on the fly without storage
✓ Limited amount of available memory
✓ Latency of data processing matters

[Stream Processing: is it enough?]

• Nature of the Streams
✓ Heterogeneous stream emanating from multiple sources
✓ Extracting the contextual Knowledge
✓ Seamless Integration of streams

• Knowledge Graph Data Model

✓ Lifting streaming data to a semantic model
✓ Schema-less model allows integration of heterogeneous streams
✓ Integration of external sources using Link Data collections
✓ New breed of applications

[Knowledge Graph Model]

✓ Set of entities and directed relations between them
✓ Constraints on type and attributes of the entities and their relations
• For RDF model:
✓Entities are IRIs, Blank Nodes, Literals (only for outer edges)
✓Relations are IRI’s
✓Set of triples (subject, predicate, object)

Person
has_post

has
_to

pic

has_category

posted_City
from

_Co
untr

y

famous_for

inte
res

ted
_In

Post1 Paris

France

Food

Football Sport

[Knowledge Graph Model]

Person
has_post

has
_to

pic

has_category

posted_City
from

_Co
untr

y

famous_for

inte
res

ted
_In

Post1 Paris

France

Food

Football Sport

?person

has_post

has
_to

pic

has_category

posted_City

inte
res

ted
_In

?post ?city

?topic ?category

KG Query Graph

Pattern Matching/Subgraph Isomorphism (homomorphism)

✓ NP-Complete Problem
✓ Require sophisticated Indexing

[Adding Temporal Dynamics to KGs]

Event/batch-based Model

Person
has_post

has
_to

pic

has_category

posted_City
from

_Co
untr

y

famous_for

inte
res

ted
_In

Post1 Paris

France

Food

Football Sport

Person
has_post

has
_to

pic

has_category

posted_City
from

_Co
untr

y

famous_for

inte
res

ted
_In

Post1 Paris

France

Food

Football Sport

Person
has_post

has
_to

pic

has_category

posted_City
from

_Co
untr

y

famous_for

inte
res

ted
_In

Post1 Paris

France

Food

Football Sport{ { {

(KG3,T3)(KG2,T2)(KG1,T1)

Person
has_post

has_t
opic

Football

posted_City
Post1

Post1 Paris
intereste

d_In

Paris

Sport{

(KG1,T1)Δ (KG2,T2)Δ (KG3,T3)Δ

{ {

Edge/Incremental Model

[KG Stream Processing]

Person
has_post

has
_to

pic

has_category

posted_City
from

_Co
untr

y

famous_for

inte
res

ted
_In

Post1 Paris

France

Food

Football Sport

Person
has_post

has
_to

pic

has_category

posted_City
from

_Co
untr

y

famous_for

inte
res

ted
_In

Post1 Paris

France

Food

Football Sport

Person
has_post

has
_to

pic

has_category

posted_City
from

_Co
untr

y

famous_for

inte
res

ted
_In

Post1 Paris

France

Food

Football Sport{ { {

(KG3,T3)(KG2,T2)(KG1,T1)

?person

has_post

has
_to

pic

has_category

posted_City

inte
res

ted
_In

?post ?city

?topic ?category

Query Graph

KG Streams

Match!!

[KG Stream Processing: Issues and Challenges]

• Traditional Static/dynamic Solutions
✓ Graph-based storage and exploration-based querying
✓ Tabular-based storage and join-based querying
✓ Re-evaluation of computed query matches

• Both techniques utilised index-store-query model
✓ Expensive indexing to accelerate query processing (O(n^4))

✓ Clustered B-+ Trees

Require on-the-fly KG stream processing

✓ Avoid expensive indexing
✓ Light-weight data structure
✓ Incremental computation of matches

[What We Offer!!]

✓ Continuous GPM over both Event and Incremental Model for

Tumbling Windows

✓ Query-based graph pruning techniques for KG events

✓ Hybrid join-and-explore matching technique to avoid expensive

indexing

✓ Light-weight multi-bidirectional data structure to comply with

streaming settings

✓ Automata-based executional framework for processing of KG

events

 Event-based
Continuous Graph
Pattern Matching

[Pruning KG Events]

Queries are register beforehand!!

Utilise structural attributes of query graph for pruning

Person
has_post

has
_to

pic

has_category

posted_City
from

_Co
untr

y

famous_for

inte
res

ted
_In

Post1 Paris

France

Food

Football Sport

Query GraphKG Event

?person

has_post

has
_to

pic
?post

?topic

tp1

tp2

[Pruning KG Events]

?person

has_post

has
_to

pic
?post

?topic

Person
has_post

has
_to

pic

has_category

posted_City
from

_Co
untr

y

famous_for

inte
res

ted
_In

Post1 Paris

France

FoodFootball Sport

has_post

Post1

S

Person

O has_topic

Football

S

Post1

O

�1 �2

4

3

S

2

O 6

5

S

3

O

�1 �2

tp1

tp2

Query-based Pruning

Materialisation into
Vertically Partitioned

Tables

Dictionary Encoding
(Strings to Numeric Ids)

tp1 tp2

QGi

[TP-Join Automata]
✓Automate an old friend of pattern matching
✓Percolation property for on-the-fly processing
✓Map the set of triple patterns (tp) to automaton states
✓Triple patterns’ join conditions as transition predicates

tp1 tp3
tp2

Proceed

Join ((o-s) , , 2) Join ((o-s) , , 3)

73

62

4

5

S

1

O

126

115

13

10

S

5

O S O

1611

17

1510

F

Proceed

⨝ ⨝

! !1 2 !3

!1 ! 2

Bidi
re

cti
on

al
Mult

im
ap

s

[TP-Join Automata]
✓Hybrid Join-and-explore
✓Join the tables for the dependent triple patterns
✓Transit to the next state if join produces results
✓Insert the resulted matches in graph-structures (multimaps)
✓Explore the graph to produce the matches without creating/using indices

tp1 tp3
tp2

Proceed Proceed

Join ((o-s) , , 2) Join ((o-s) , , 3)

73

62

4

5

S

1

O

126

115

13

10

S

5

O S O

1611

17

1510

51
105

115

2 6
6 12

105 10 15

115
11 16

F

Proceed

⨝ ⨝

� �1 2 �3

�1 � 2

R1 R2

4

4

13

13

13

13

13

17

17

[TP-Join Automata]

• On-the-fly execution

• Each step reduces the search space by removes the “dangling” triples

• Support of start, chain, cyclic queries without incurring the cost of indexing

• Can extend the automata for expressive operators, such as kleen-+, negation

• Process joins only if there is an enough evidence of matching a KG event

 Incremental
Continuous Graph
Pattern Matching

[Incremental CGPM]

• Same approach for pruning events/graph updates

• Extend TP-Join Algorithm:

✓incrementally locate new matches

✓efficiently update the old matches

• Matches emerge slowly during incremental evaluation

• Find partial matches for each update and incrementally process remaining

matches

• Lazy Evaluation of joins

[Incremental CGPM] tp1

p1 :pst

?ps

?f

:frnd:pic?pic

:n

?n

tp2

tp3

tp4
:P1

:n

:N1

tp1

 :N1:P1
OS

:n

!1

:P1 :pst

:Pst1:frnd

:P2

:N1:P1
OS

:P2:P1
OS

:Pst1:P1
OS

tp1 tp3tp2

:n :frnd :pst

!1 !2 !3

:P1

:pic

:Pic1

tp1 tp3tp2 tp4

:Pic1:P1
OS :pic

:N1:P1
OS :n

:P2:P1
OS :frnd

:Pst1:P1
OS :pst

!

!4

!1

!3

!2

"

"

"

"

"

:P1

:pst

:Pst2
:Pst2:P1
OS

tp3

:pst

:Pic1:P1
OS :pic

:N1:P1
OS :n

:P2:P1
OS :frnd

:Pst2:P1
:Pst1:P1
OS :pst

!

!3

"

[Incremental CGPM]

• Lazy Evaluation:

✓Defer the joining process

✓Make sure all the triple pattern has corresponding triples

✓Store the matched results in Final Tables (FT) for a defined window

• Utilise final tables to incrementally match the new updates

• Lazy evaluation save useless computations

• Previously matched results are store in Final Tables:

✓Incremental CGPM produces the same result as that of re-evaluation

[Empirical Evaluation]

✓How the system performs as compared to traditionally Index-based solutions

✓How the system performs as compared to re-evaluation based systems

[Empirical Evaluation]

• Metrics Event-based Evaluation:

✓Varying the number of events and then triples within each event

✓Window size would not effect the performance (no aggregate operators

used)

• Metrics Incremental Evaluation:

✓Varying the window size (w) and evaluate events within the tumbling window

✓Size of the window has direct impact on the performance

[Empirical Evaluation]

• Datasets:
✓NY Taxi dataset with 50 million taxi related events, each event
containing 24 triples
✓Social Network Benchmark (SNB) containing 50 million triples

• Queries:

✓ Three NY Taxi data queries containing start, chain and combination

of both

✓Three SNB queries from the use cases described in the benchmark

 (star, chain and cyclic)

✓ Three LsBench Queries customised for SNB dataset (Used for RSP)

103

104

105

106

1M 10M 30M 40M 50M

*

Th
ro

ug
hp

ut
 (g

/s
) l

og
(y

)

of Events Processed

E-CGPM
Sesame

Jena
RDFoX

CQELS

[Event-based Evaluation (NY-Taxi)(NY-Q1)]

✓CQELS: RDF stream processing system

✓Jena,Sesame,RDFox: In-memory triple stores and static RDF data processing

✓Set-sized sized events
✓Optimisation has not much

of effect

[Event-based Evaluation (SNB-Q1)]

102

103

104

105

106

500P 1KP 5KP 10KP 20KP 30KP

*

Ex
ec

ut
io

n
Ti

m
e

(m
s)

 lo
g(

y)

Streams from Table 2

E-CGPM
Sesame

Jena
RDFox

✓Variable sized events
✓E-CGPM shows considerable
 performance improvements

[Event-based Evaluation (SNB-Q1)]

102

103

104

105

500P 1KP 5KP 10KP 20KP 30KP

Ex
ec

ut
io

n
Ti

m
e

(m
s)

 lo
g(

y)

Streams from Table 2

E-CGPM
Sesame

Jena
RDFox

102

103

104

105

500P 1KP 5KP 10KP 20KP 30KP
Ex

ec
ut

io
n

Ti
m

e
(m

s)
 lo

g(
y)

Streams from Table 2

E-CGPM
Sesame

Jena
RDFox

Latency (Data insertion time)Query Processing Time

[Incremental Evaluation (SNB-Q1)]

101

102

103

104

105

106

107

50K 200K 1M 10M 20M 30M

*

*

Ex
ec

ut
io

n
Ti

m
e

(m
s)

 lo
g(

y)

Window Size (triples)

I-CGPM
Sesame

Jena
RDFox

✓Incremental Vs re-evaluation techniques
✓Linear response with the increase in the window size

[Incremental Evaluation (Ls-Bench)]

103

104

105

106

1 2 4 10

*

*
*

Th
ro

ug
hp

ut
 (t

rip
le

s/
s)

 lo
g(

y)

Window Size (seconds)

I-CGPM-Q3
CQELS-Q3
I-CGPM-Q2

CQELS-Q2
I-CGPM-Q1
CQELS-Q1

✓CQELS RSP system performs poorly for large datasets
✓Lazy Evaluation pays off with less number of join operations

[Conclusion]

• Expensive indexing-based solutions add quite a lot of latency for KG streams

• By leveraging the hybrid join-and-explore technique such latency can be

reduced

• on-the-fly processing go KG streams requires customised data structures

• Incremental Evaluation outperforms re-evaluation techniques by an order of

magnitude

[Questions?]

Contact: Syed Gillani
syed.gillani@univ-st-etienne.fr

mailto:syed.gillani@univ-st-etienne.fr

