
Published in B. Henderson-Sellers and P. Giorgini, editors, Agent Oriented Methodologies, chapter 7, pages 172-202, Idea Group Publishing, 2005.

172 Bernon, Camps, Gleizes & Picard

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter VII

Engineering Adaptive
Multi-Agent Systems:

The ADELFE Methodology

Carole Bernon
IRIT – University Paul Sabatier, France

Valérie Camps
IRIT – University Paul Sabatier, France

Marie-Pierre Gleizes
IRIT – University Paul Sabatier, France

Gauthier Picard
IRIT – University Paul Sabatier, France

Abstract

This chapter introduces the ADELFE methodology, an agent-oriented
methodology dedicated to the design of systems that are complex, open, and
not well-specified. The need for its development is justified by the theoretical
background given in the first section, which also gives an overview of the
concepts on which multi-agent systems developed with ADELFE are based.
A methodology is composed of a process, a notation, and tools. Tools are
presented in the second section and the process in the third one, using an
information system case study to better visualize how to apply this process.

Published in B. Henderson-Sellers and P. Giorgini, editors, Agent Oriented Methodologies, chapter 7, pages 172-202, Idea Group Publishing, 2005.

Engineering Adaptive Multi-Agent Systems: The ADELFE Methdology 173

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The last part of the chapter assesses strengths and limitations of ADELFE.
We note that its main strength is also its main limitation—it is a specialized
methodology, especially suited to the development of software with emergent
functionalities.

Introduction

Usually, classical design of computational systems requires some important
initial knowledge in the sense that the exact purposes of the system and every
interaction to which it may be confronted in the future have to be known.
However, at the same time, today’s problems are becoming more and more
complex (e.g., information searching on the Internet, mobile robots moving in the
real world). Indeed, systems that are able to deal with such problems are also
becoming open and complex; they are immersed in a dynamical environment;
they are often incompletely specified and, especially, an a priori known algorithm
does not exist to find a solution. Classical approaches then become inadequate
and a new way to tackle such problems is necessary.

Our research work, for several years now, has essentially focused on these kinds
of systems and has led us to propose Adaptive Multi-Agent Systems (AMAS)
as an answer (Camps, Gleizes, & Glize, 1998; Capera, Georgé, Gleizes & Glize,
2003; Gleizes, Georgé & Glize, 2000; Piquemal-Baluard, Camps, Gleizes, &
Glize, 1996). These systems are composed of agents that permanently try to
maintain cooperative interactions with others. We have built, with success,
several systems based on the use of adaptive agents in different areas. To ease
and promote this kind of programming, we then developed the ADELFE
methodology, the aim of which is to help and guide designers when developing
AMAS.

The remainder of this section briefly presents the foundation of adaptive multi-
agent systems and then explains how to implement adaptation in such systems.
After that, the main characteristics of ADELFE, as well as the context of its
presentation, are given.

Theoretical Background: Adaptive Multi-Agent Systems

In a general way, when conceiving a system, a designer wants it to realize the
right function; the system must be “functionally adequate.” But openness and
dynamics are sources of unexpected events and an open system plunged into a
dynamic environment has to be able to adapt to these changes, to self-organize.

Published in B. Henderson-Sellers and P. Giorgini, editors, Agent Oriented Methodologies, chapter 7, pages 172-202, Idea Group Publishing, 2005.

174 Bernon, Camps, Gleizes & Picard

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

If every component of a system is endowed with the capability to locally
rearrange its interactions with others, this ability of self-organization at the
lowest level permits changes in the global function without coding this modifica-
tion at the upper level of the system. Self-organization is a means to make the
system adapt but also to overcome complexity. If a system is complex and its
algorithm unknown, it is impossible to code its global function. This function has
then to emerge at the macro level (the system level) from the interactions at the
micro level (component level). Moreover, this global function cannot be known
at the component level, and a component just needs some local criteria to
rearrange its interactions. A proven theorem on functional adequacy says that
“For any functionally adequate system in a given environment, there is a system
having a cooperative internal medium which realizes an equivalent function”
(Camps et al., 1998, p. 8). In other words, it is sufficient to build a system whose
components have a cooperative attitude to make it realize an expected function.
Cooperation is the local criterion that enables a component to find the right place
within the organization and that ensures that the system taken as a whole is
functionally adequate.

Highly relevant to our work in the agent domain, this theory has been mapped
onto multi-agent systems1 giving rise to what we call Adaptive Multi-Agent
Systems (AMAS).

Implementation of Self-organization: Cooperative Agents

Any agent in an AMAS follows a specific lifecycle that consists of three steps:

• The agent gets perceptions from its environment;

• It autonomously uses them to decide what to do in order to reach its own
goal; and

• It acts to realize the action on which it has previously decided.

More precisely, each agent follows this lifecycle while trying to keep cooperative
local interactions with others.

These cooperative agents are equipped with five modules to represent their
“physical,” “cognitive,” or “social” capabilities (Picard, 2003). Each module
represents a specific resource for the agent during its “perceive-decide-act”
lifecycle. The first four modules are quite classical in an agent model (Brazier,
Jonker, & Treur, 1999; Wooldridge, 2002); the novelty comes from the fifth one:

Published in B. Henderson-Sellers and P. Giorgini, editors, Agent Oriented Methodologies, chapter 7, pages 172-202, Idea Group Publishing, 2005.

Engineering Adaptive Multi-Agent Systems: The ADELFE Methdology 175

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• The skill module represents knowledge on specific fields that enables
agents to realize their partial function. No technical constraints are required
to design and develop skills. For example, they can be represented as a
classical or fuzzy knowledge base of facts and rules on particular domains.
They can also be decomposed into an MAS at a lower level to support
learning if they need to evolve.

• The representation module enables an agent to create its own representa-
tion about itself, other agents, or the environment it perceives. For example,
representations can be implemented as a classical or fuzzy knowledge
base. As with skills, representations can be decomposed into an MAS when
learning capabilities on representations are needed.

• The interaction module is composed of perceptions and actions. Percep-
tions represent the inputs the agent receives from its environment. Actions
represent the outputs and the way the agent can act on its physical
environment, its social environment, or itself (considering learning actions,
for example). Both perceptions and actions may have different granularities—
from simple effectors providing activation for a robot to semantically
complex message sending for social agents.

• The aptitude module provides capabilities to reason on perceptions, skills,
and representations – for example, to interpret messages. For example,
these aptitudes can be implemented as inference engines if skills and
representations are coded as knowledge bases.

• The cooperation module embeds local rules to be locally “cooperative.”
Being cooperative does not mean that an agent is always helping other
agents or that it is altruistic, but only that it is able to recognize states that
it judges opposed to what it knows as being an “ideal cooperation” (that is
to say fulfilling three conditions: all perceived signals are understood,
reasoning on them leads to conclusions and these conclusions are useful).
These states are called “cooperation failures” or Non Cooperative Situa-
tions (NCS). From an observer’s viewpoint, the whole system is able to
detect any non-cooperative state coming either from the occurrence of
novelty or resulting from feedback returned by the environment concerning
a previously erroneous response of the system.

This theory has been applied to many projects: foraging ant simulation (Topin et
al., 1999), knowledge management, e-commerce (Gleizes, Glize, & Link-Pezet,
2003), flood forecasting (Georgé, Gleizes, Glize, & Régis, 2003), routing in
telephonic network, mechanical design, bio-informatics, and so forth. To ease
our future work, design tools were required. They were also needed to promote
this kind of programming towards designers not accustomed to developing
AMAS.

Published in B. Henderson-Sellers and P. Giorgini, editors, Agent Oriented Methodologies, chapter 7, pages 172-202, Idea Group Publishing, 2005.

176 Bernon, Camps, Gleizes & Picard

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The Methodology ADELFE: Context of Presentation

It was soon recognized that even though several agent-oriented methodologies
already existed (Iglesias, Garijo, & Gonzalez, 1998; Wood & DeLoach, 2000),
none was suited to handle complexity, dynamics, openness, or software adapta-
tion. This led us to develop a toolkit – ADELFE – to work on some aspects not
already considered by existing methodologies and to support the AMAS theory
that has been briefly introduced above (Bernon, Camps, Gleizes, & Picard,
2002). ADELFE is an acronym that, translated from French, means “toolkit to
develop software with emergent functionality.”

In a general way, a methodology is made up of a process, some notations, and
tools to support these notations and/or help the developer (Shehory & Sturm,
2001). ADELFE provides a specific process adapted from an interpretation of
the Rational Unified Process (RUP) (Kruchten, 2000) according to the Neptune
Project (http://www.neptune.irit.fr). Some additions have been made to take
into account specificities of the AMAS theory, for example, the characterization
of the environment of the system, the identification of cooperation failures, and
so forth.

In the third section of this chapter, each of these extensions is exemplified
relating to a particular case study. The chosen case study consists of designing
a system that enables end-users and service providers to get in touch when they
share common centres of interest in a dynamic and distributed context (such as
the problem described in Gleizes et al. [2000]). The main requirement of such
an electronic information system is to enable 1) end-users to find relevant
information for a given request, and 2) information providers to have their
information proposed to relevant end-users.

More precisely, the system has to provide:

• Personalized assistance and notification for the end-users;

• Propagation of requests between the actors of the system;

• Propagation of new information only to potentially interested end-users;
and

• Acquisition of information about end-users’ real interests, in a general
manner, and about the information offers of providers.

We are clearly situated in a system where every end-user and service provider
has an individual goal: to answer the request he/she has to solve. Each end-user
and service provider does not know the global function of the system. The system
is strongly open because a great number of appearances or disappearances of

Published in B. Henderson-Sellers and P. Giorgini, editors, Agent Oriented Methodologies, chapter 7, pages 172-202, Idea Group Publishing, 2005.

Engineering Adaptive Multi-Agent Systems: The ADELFE Methdology 177

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

end-users and/or service providers may occur. Moreover, an algorithmic solution
is not known. In this context, classical approaches to tackle such a problem
cannot be applied. Using an AMAS in such a context is clearly relevant—we can
say that such a system is functionally adequate when a satisfied end-user wants
to use services of the system again, and when each service is fully used, namely,
in the most profitably way for the supplier.

Although ADELFE is an agent-oriented methodology suited to develop applica-
tions based on the AMAS technology, it does not assume that the designer is
specialized in this field. Therefore, some additional notations are provided as well
as some tools to help or guide the designer throughout the process application.
An overview of these different tools is given in the next section. The process of
ADELFE is expounded upon in the third section, by using the case study as
illustration. Strengths and weaknesses of ADELFE are finally presented, along
with some omissions that were intentionally made when defining this methodol-
ogy.

Tools Linked with ADELFE

To help in its use, ADELFE is based on “standards” such as the RUP and UML;
it also uses AUML2 (Odell, Van Dyke Parunak, & Bauer, 2000) to express agent
interaction protocols. However, being based on standards is not sufficient, and
tools are also required. This section gives an overview of the three main tools
integrated into the ADELFE toolkit:

• A tool that analyzes answers given by the designer to tell him/her if using
the AMAS technology is useful to implement the target system;

• OpenTool, a graphical modelling tool that supports the UML notation and
that has been modified to integrate new stereotypes and AUML interaction
protocols; and

• An interactive tool that describes the process and helps the designer to
apply it.

The AMAS Adequacy Tool

Not every designer needs to use the AMAS theory to build a system. Indeed, if
the algorithm required to solve the task is already known, if the task is not
complex, or if the system is closed and nothing unexpected can occur, this kind

Published in B. Henderson-Sellers and P. Giorgini, editors, Agent Oriented Methodologies, chapter 7, pages 172-202, Idea Group Publishing, 2005.

178 Bernon, Camps, Gleizes & Picard

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

of programming is completely useless and a more adapted one can then be
considered. Thus, ADELFE gives the designer a tool to study the adequacy of
the AMAS technology more easily.

This adequacy is studied at two levels: the global one (system) and the local one
(components). At the system level, eight criteria are studied:

1. Is the global task incompletely specified? Is an algorithm a priori unknown?

2. Is the correlated activity of several entities needed to solve the problem?

3. Is the solution generally obtained by repetitive tests? Are different attempts
required before finding a solution?

4. Can the system environment evolve? Is it dynamic?

5. Is the system functionally or physically distributed? Are several physically
distributed components needed to solve the global task? Or is a conceptual
distribution needed?

Figure 1. Overview of the AMAS adequacy tool

Published in B. Henderson-Sellers and P. Giorgini, editors, Agent Oriented Methodologies, chapter 7, pages 172-202, Idea Group Publishing, 2005.

Engineering Adaptive Multi-Agent Systems: The ADELFE Methdology 179

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

6. Does a great number of components needed?

7. Is the studied system non-linear?

8. Finally, is the system evolutionary or open? Can new components appear
or disappear dynamically?

And at the component level, three more criteria are used:

9. Does a component have only a limited rationality?

10. Is a component “big” or not? Is it able to do many actions, to reason a lot?
Does it need significant abilities to perform its own task?

11. Can the behaviour of a component evolve? Does it need to adapt to the
changes of its environment?

These questions are asked of designers using a graphical interface as visualized
in Figure 1. A designer uses a slider to answer a question by giving a rate among
20 possibilities ranging from “yes” to “no.” His/her answers are then analyzed
by the support decision tool. The two areas at the bottom of the graphical tool
window show the answers of ADELFE regarding the global level and the local
one. By clicking on those areas, an interpretation of the results can be obtained.

OpenTool Modified for ADELFE

OpenTool is a graphical modelling tool supporting the UML notation; it is
developed and commercialized by our project partner, TNI-Valiosys, and is
embedded in the ADELFE toolkit. This tool permits applications modelling while
assuring that the produced models are valid.

On the one hand, some deficiencies exist in the UML notation for dealing with
the specific modules composing a cooperative agent. On the other hand, AUML
diagrams to model interaction protocols between agents are needed and must be
supported by the tools linked with ADELFE. OpenTool has thus been modified
to allow expression of cooperation failures, to deal with the components of an
agent that constitute its behaviour, and to embed some AUML diagrams.

Expressing the Behaviour of an Agent through Stereotypes

Two solutions were available to express the behaviour of agents: extending the
meta-model or using a UML profile (Desfray, 2000). The former solution has not

Published in B. Henderson-Sellers and P. Giorgini, editors, Agent Oriented Methodologies, chapter 7, pages 172-202, Idea Group Publishing, 2005.

180 Bernon, Camps, Gleizes & Picard

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

been chosen because concepts concerning the agent domain or the multi-agent
one are not so well defined and set; many points of view still exist. It is therefore
difficult to “dictate” an agent or a multi-agent architecture.

We thus chose the latter solution by defining nine stereotypes to show how an
agent is formed and/or how its behaviour is expressed. They are defined and
embedded into OpenTool and rules (written in the OTScript language linked with
OpenTool) are given to govern their use:

• The first stereotype, «cooperative agent», expresses that an entity is an
agent that has a cooperative attitude and can be used to build AMAS. An
agent is implemented using a class stereotyped with «cooperative agent»
that must have methods (perceive, decide, act) that simulate the agent’s
lifecycle.

• As introduced in the previous section, modules are related to a cooperative
agent and stereotypes have been associated with each one of these
modules: «skill», «aptitude», «representation», «interaction», «perception»,
«actions» (perceptions and actions are specific interactions), and «coopera-
tion».

• The ninth stereotype, «characteristic», is used to tag an intrinsic or physical
property of a cooperative agent (for example, the address of a service
provider). A characteristic can be accessed or called anytime during the
lifecycle. It can also be accessed or called by other agents (for example,
if an end-user wants to know the address of a service provider).

A class called CooperativeAgent is the base class of all these stereotypes (see the
third section, devoted to the process of ADELFE). The «cooperative agent»
stereotype can only be applied to a class inheriting from that one. The last eight
stereotypes can be applied to attributes and/or methods of this class. Attributes
correspond to the data manipulated in the modules composing a cooperative
agent; methods are means to access or act on these attributes.

More details about those stereotypes and the rules linked with them (e.g., an
agent inherits from a super-class called CooperativeAgent, methods stereotyped
with «cooperation» are always called during the decision phase of an agent, etc.)
can be found in Picard (2003).

Integrating the AUML Notation

Agents’ interactions and languages are specified by using the AUML interaction
protocol model (Odell, Van Dyke Parunak, & Bauer, 2001). To fit with AMAS

Published in B. Henderson-Sellers and P. Giorgini, editors, Agent Oriented Methodologies, chapter 7, pages 172-202, Idea Group Publishing, 2005.

Engineering Adaptive Multi-Agent Systems: The ADELFE Methdology 181

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

specificities, the model has been extended and included in OpenTool functionalities
(Bernon et al., 2004).

The first extension concerns the non-determinism of OR or XOR nodes. AUML
remains vague concerning the decision process that manages these nodes. In
ADELFE, an «aptitude»-stereotyped method is attached to the node. This
method specifies the agent method that chooses the message to send or the
action to do.

The second extension highlights the cooperative attitude of an agent. When
receiving a message, an agent may detect a Non Cooperative Situation. To
specify this detection and enable its processing, a «cooperation»-stereotyped
method can be attached to the reception point of the message.

The Interactive Tool

The first functionality of the ADELFE interactive tool is to be a guide by
describing the process; each stage of the process is depicted and exemplified by

Figure 2. The ADELFE Interactive Tool – A general view showing the four
main windows: (1) Manager interface, (2) WorkProduct interface, (3)
Description interface, and (4) Example interface. The optional Synthesis
and Glossary interfaces are not shown on this figure.

Published in B. Henderson-Sellers and P. Giorgini, editors, Agent Oriented Methodologies, chapter 7, pages 172-202, Idea Group Publishing, 2005.

182 Bernon, Camps, Gleizes & Picard

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

applying it to a tutorial application. This tool also provides a means to support the
adopted notations and draw the needed diagrams by integrating the customized
version of OpenTool. It verifies the project consistency by displaying what
stages can be done depending on what has been already done or what documents
have been produced so far. Finally, the AMAS adequacy tool is linked with this
interactive tool to support the AMAS technology.

This interactive tool is composed of several interfaces (Bernon et al., 2004):

• A “Manager” interface (window #1, Figure 2) indicates, for the different
opened projects, the different stages that designers have to follow when
applying the methodology. Designers can backtrack in the methodology
process as they wish, but some stages can be inaccessible (written in grey)
depending on the progress state of the current opened project. Clicking on
a stage name displays the related information in the other windows.

• A “WorkProduct” interface (window #2, Figure 2) dynamically lists the
work products that have been produced (written in green) or that still have
to be produced regarding the current progress when applying the method-
ology.

• A “Description” interface (window #3, Figure 2) explains stages compos-
ing the methodology process. The description text can contain flags
showing that OpenTool or the AMAS adequacy tool must be used. The
designer has then to click on the corresponding icon in the toolbar (#5,
Figure 2) to launch it. The interactive tool is able to communicate with
OpenTool to make the designer access the right diagram depending on the
stage it is following.

• An “Example” interface (window #4, Figure 2) shows how the current
stage has been applied to the tutorial application.

• An optional “Synthesis” interface shows a global view and an abstract of
the already made stages.

• An optional “Glossary” interface explains the terms used in the methodol-
ogy and defines the stereotypes that have been added to UML.

This interactive tool can be downloaded from the ADELFE Web site (http://
www.irit.fr/ADELFE). This site constitutes an online and simplified version of
the interactive tool.

Published in B. Henderson-Sellers and P. Giorgini, editors, Agent Oriented Methodologies, chapter 7, pages 172-202, Idea Group Publishing, 2005.

Engineering Adaptive Multi-Agent Systems: The ADELFE Methdology 183

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The Process of ADELFE

The primary objective of the ADELFE method is to cover all the phases of a
classical software design—from the requirements to the deployment. A well-
known process, the RUP, has been tailored to take into account specificities
coming from the design of adaptive multi-agent systems. Phases are called
WorkDefinitions (WDi), Activities (Aj) or Steps (Sk), following the vocabulary
of the Object Management Group’s (OMG) Software Process Engineering
Metamodel (SPEM) (OMG, 2002), which has been used to express the ADELFE
process (Gleizes, Millan, & Picard, 2003). Only the requirements, analysis, and
design work definitions require modifications in order to be adapted to AMAS,
others appearing in the RUP remaining the same. This section gives a theoretical
and sequential description of these three WDs, but, of course, a designer may
back track between the different stages, like in the RUP.

The stages that are specific to the AMAS technology are marked with a bold font
in the description tables below. For reasons of clarity, their theoretical descrip-
tion is sometimes followed by a practical application to the information system
case study (see first section).

WD1 & WD2 – Preliminary and Final Requirements

With respect to an object-oriented methodology, ADELFE adds nothing to
preliminary requirements (WD1) as described by the RUP. The aim still consists
of studying the customer needs to produce a document on which both the
customer and the designer agree.

Table 1. WD1 & WD2 – Preliminary and Final Requirements in ADELFE –
Their aim is to define the system such as the customer wants it to be.

WD1: Preliminary requirements
 A1: Define user requirements
 A2: Validate user requirements
 A3: Define consensual requirements
 A4: Establish keywords set
 A5: Extract limits and constraints

WD2: Final requirements
 A6: Characterize environment
 S1: Determine entities
 S2: Define context
 S3: Characterize environment
 A7: Determine use cases
 S1: Draw an inventory of use cases
 S2: Identify cooperation failures
 S3: Elaborate sequence diagrams
 A8: Elaborate UI prototypes
 A9: Validate UI prototypes

Published in B. Henderson-Sellers and P. Giorgini, editors, Agent Oriented Methodologies, chapter 7, pages 172-202, Idea Group Publishing, 2005.

184 Bernon, Camps, Gleizes & Picard

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

A6 – Characterize the Environment

Unlike classical approaches, the environment of the system is central in the
AMAS theory. Actually, the adaptation process of the system depends on the
interactions between the system and its environment. Therefore, during the final
requirements (WD2), before determining use cases, the environment must be
studied by the designer. One activity (A6) is then added to the RUP to
characterize the environment of the system. This characterization begins by
identifying the entities that interact with the system and constraints on these
interactions (A6-S1). An entity is an actor in the UML sense and may be
described as being active or passive in ADELFE. An active entity may behave
autonomously and is able to act in a dynamical way with the system. A passive
entity can be considered as a resource by the system; it may be used or modified
by active ones but cannot change in an autonomous way. This distinction
between entities is essential because agents composing the system, which are
not a priori known at this stage, will be found among active ones.

In the case study, we can only find active entities, each one representing an end-
user or a service provider who has subscribed to the system. An end-user seeks
a relevant service provider according to his/her centres of interest, while a
provider tries to find potentially interested end-users according to his/her
proposed services. Due to the space limitation, the case study cannot be entirely
and precisely studied in this chapter; as these two actions are totally symmetric,
we will only focus on the search for a service.

In the next step (A6-S2), the context is studied through the interactions between
entities and the system. This step adds no special notation and uses UML
collaboration or sequence diagrams.

Finally, the designer must describe the environment with terms inspired from
Russel and Norvig (1995) (A6-S3). Thus the environment may be:

• Accessible (as opposed to “inaccessible”) if the system can obtain com-
plete, accurate, and up-to-date information about the state of its environ-
ment. For example, an environment such as the Internet is not an accessible
one because knowing all about it is impossible.

• Continuous (as opposed to “discrete”) if the number of possible actions and
perceptions in the environment is infinite. For example, in a real environ-
ment like the Internet, the number of actions that can be performed by users
can be unbounded.

• Deterministic (as opposed to “non deterministic”) if an action has a single
and certain effect. The next state of the environment is completely
determined by the current state. By its very nature, the real physical world
is a non-deterministic environment.

Published in B. Henderson-Sellers and P. Giorgini, editors, Agent Oriented Methodologies, chapter 7, pages 172-202, Idea Group Publishing, 2005.

Engineering Adaptive Multi-Agent Systems: The ADELFE Methdology 185

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Dynamic (as opposed to “static”) if its state depends upon actions of the
system that is within this environment but is also dependent on the actions
of some other processes. So, changes cannot be predicted by the system.
For example, the Internet is a highly dynamic environment.

In the case study, the environment of the system consists of end-users and
service providers who have subscribed to the system. Each of them exerts
pressure on the system (by submitting requests to find relevant service providers
or to seek potential customers), and the system has to adapt itself to these
constraints. Reorganizing interaction links between entities representing end-
users and service providers is a way for the system to adapt to its environment.
For the reasons previously given, the environment can be described as inacces-
sible, continuous, non-deterministic and highly dynamic.

A7- S2 – Identify Cooperation Failures

The next activity is a classical one in which use cases are identified from the point
of view of the MAS user (A7). But ADELFE is only interested in “cooperative
agents” that enable building AMAS. At this point, designers must also begin to
think about the events that can be “unexpected” or “harmful” for the system,
because these situations can lead to Non Cooperative Situations at the agent
level. These “cooperation failures” can be viewed as a kind of exception. To take
this aspect into account, the determination of use cases has been modified by

Figure 3. (Simplified) Use case for the information system – Two cooperation
failures may be identified

Published in B. Henderson-Sellers and P. Giorgini, editors, Agent Oriented Methodologies, chapter 7, pages 172-202, Idea Group Publishing, 2005.

186 Bernon, Camps, Gleizes & Picard

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

adding a step (A7-S2) in which cooperation failures must be highlighted within
the previously identified use cases (A7-S1), using a specific notation (dotted
arrows) added to and then supported by OpenTool.

In the case study, two main cooperation failures may occur (see Figure 3). The
first one may appear during a request when the service provider replying to the
end-user request is unavailable. The second may appear during an offer process
if the targeted end-user has disappeared. The remainder of this second work
definition is classical and will not be described here.

WD3 – Analysis

Domain analysis is a static view and an abstraction of the real world established
from previous requirements and remains the same as in the RUP (A10). By
studying the previously defined use cases and scenarios, the analyst identifies the
components of his/her system. This identification is more or less complex
depending on the studied applications (Georgé et al., 2003; Shehory & Sturm,
2001) and aims at clustering the different identified components into a prelimi-
nary class diagram.

A11 – Verify the AMAS Adequacy

As outlined in the introduction section, not every designer needs AMAS theory
to build a system. Thus, a new and appropriate activity is added to the process
to study the adequacy of the AMAS technology (A11) through the tool previously
described. This adequacy must be studied at two levels (A11-S1 & A11-S2),
through a certain number of criteria:

Table 2: WD3 – Analysis in ADELFE – Its aim is to enable the designer to
structure his/her system in terms of components and interactions between
these components.

A10: Analyze the domain
 S1: Identify classes
 S2: Study interclass relationships
 S3: Construct preliminary class diagrams
A11: Verify the AMAS adequacy
 S1: Verify it at the global level
 S2: Verify it at the local level

A12: Identify agents
 S1: Study entities in the domain context
 S2: Identify potentially cooperative entities
 S3: Determine agents
A13: Study interactions between entities
 S1: Study active/passive entities relationships
 S2: Study active entities relationships
 S3: Study agent relationships

Published in B. Henderson-Sellers and P. Giorgini, editors, Agent Oriented Methodologies, chapter 7, pages 172-202, Idea Group Publishing, 2005.

Engineering Adaptive Multi-Agent Systems: The ADELFE Methdology 187

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• At the global level, to answer the question “is a system implementation using
AMAS needed?”

• At the local level, to try to answer the question “do some components need
to be implemented as AMAS?” That is, is some decomposition or recursion
useful during design?

If a positive answer is given by the tool in the former case, the designer can
continue applying the process. Furthermore, if the tool shows the same need at
the components level, ADELFE must be applied again to these components that
will be considered as AMAS themselves because they need to evolve.

Even though some features of the case study application (a priori unknown
algorithm, open and dynamic environment, evolutionary system, etc.) may meet
the essential characteristics within the remit of the AMAS theory, the adequacy
tool has been used to reinforce this idea. The values given to the different
questions (see the description of the tool in the introductory section) are
respectively 17, 16, 11, 19, 20, 12, 5, 19, 17, 15, and 13. Values given to criteria
1, 3, 5, and 7 express the fact that this problem is a complex and open one for
which no well-established algorithm exists. The second and fourth values show
that, at this point, the designer does not know exactly how to implement a
solution.

The positive result given by ADELFE can be seen on the Figure 1. Using an
AMAS is relevant for solving this case study; using AMAS for some components
of the system is also relevant. This latter result will lead us to apply the process
again once the agents have been identified (WD4) to possibly find other entities
and consequently agents. We will only focus here on the entities representing
end-users and service providers; other entities present in the real developed
system will not be taken into account.

A12 – Identify Agents

In ADELFE, agents are not considered as being known in advance; therefore,
the designer must identify them in a new activity (A12) in which the previously
identified entities will be studied and evaluated. If an entity shows some specific
properties (autonomy, local goal to pursue, interactions with others, partial view
of its environment, ability to negotiate), it may be a potential cooperative entity
(A12-S1). Indeed, this does not concern all active entities. Some of them could
autonomously evolve without having a goal, for example, an autonomous
resource such as pheromones or active objects. In that case, they are not
potentially cooperative and will remain simple objects without becoming agents.
To actually be a cooperative agent, a potential cooperative entity must be prone

Published in B. Henderson-Sellers and P. Giorgini, editors, Agent Oriented Methodologies, chapter 7, pages 172-202, Idea Group Publishing, 2005.

188 Bernon, Camps, Gleizes & Picard

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

to cooperation failures. By studying its interactions with its environment and with
other entities, the designer has then to determine if this entity may encounter such
situations that will be considered as Non Cooperative Situations at the agent level
(A12-S2). The entities verifying all these criteria will be identified as agents and
the classes related to them marked with the specific «cooperative agent»
stereotype (A12-S3).

In the case study, the active entities identified in A6-1 can be considered as
agents because of their properties. Such entities are autonomous, have a local
goal to pursue (to find a relevant service provider or to make targeted advertise-
ment), have a partial view of their environment (other active entities), or may
interact with others to target the search more effectively. They are then
potentially cooperative. Furthermore, since the system is open, new entities may
appear or disappear, and they may not be able to communicate as they should
(e.g., an entity does not understand requests from a new one). In that case, an
active entity is prone to cooperation failures and can be viewed as a cooperative
agent. Each end-user (or service provider) is then represented within the system
by an agent called TransactionAgent (TA).

A13 - S3 – Study Agent Relationships

Interactions between all the identified entities are then studied in the last activity
of this work definition (A13). Studying relationships between passive and active
entities or between solely active ones is done by using UML collaboration or
sequence diagrams in a standard way. However, in the last step of this activity,
protocol diagrams are used to express relations between all the existing agents
(A13-S3). These diagrams can be built using OpenTool modified to support
AUML.

The AUML protocol diagram, shown in Figure 4, expresses the way in which the
system responds to an end-user’s request. The end-user TA, which represents
the end-user, tries to satisfy the request by finding a relevant service provider
TA. If it does not have any relevant partner, it asks a special address provider
TA for partner addresses. Since every TA is cooperative, when a TA judges
itself incompetent to respond to a received request, it will not discard this request;
rather, it will send it again to another TA that is competent from its point of view.
Every TA having the same cooperative behaviour, the request may be propa-
gated a limited number of times, step-by-step.

Published in B. Henderson-Sellers and P. Giorgini, editors, Agent Oriented Methodologies, chapter 7, pages 172-202, Idea Group Publishing, 2005.

Engineering Adaptive Multi-Agent Systems: The ADELFE Methdology 189

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

WD4 – Design

This design work definition is an important stage because the recursive charac-
terization of an AMAS is identified at this stage and can lead to the identification
of other agents at a lower level. This may imply one design process for each new
identified level of the system.

The first activity identifies the detailed architecture for the system with
packages, sub-systems, objects, agents, and relations between them to produce
a class diagram in which the predefined CooperativeAgent class and the «coop-
erative agent» stereotype will appear (A14).

In the case study, the TransactionAgent’s (TA’s) goal is to find relevant TAs
according to the request that its associated end-user or service provider
submitted for solution. To represent these TAs, a class called TA has been

Figure 4. An AUML Protocol Diagram for the Case Study – It expresses the
way in which the system answers an end-user’s request.

Published in B. Henderson-Sellers and P. Giorgini, editors, Agent Oriented Methodologies, chapter 7, pages 172-202, Idea Group Publishing, 2005.

190 Bernon, Camps, Gleizes & Picard

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

defined. This class inherits from the CooperativeAgent class and therefore
contains four mandatory methods: run, perceive, decide, and act. It is also tagged
with the «cooperative agent» stereotype.

A15 – Study Interaction Languages

The designer has then to study interaction languages to define, in a new activity
(A15), the way in which agents interact. If agents interact in order to commu-
nicate, for each scenario defined in A7 & A13, information exchanges between
agents must be described using AUML protocol diagrams. Languages that
enable interactions between agents may be implemented by a set of classes or
by a design pattern, including specific agent communication tools such as an
implementation of Foundation for Intelligent Physical Agents (FIPA) Agent
Communication Language (ACL). As they are generic models, protocol dia-
grams are attached to packages and not to classes. If no direct communication
exists between agents (e.g., they communicate in an indirect manner via the
environment by modifying it), defining an interaction language is useless. Indeed,
this step only aims at detailing the protocol used by agents to communicate and
does not give any means to implement these interactions.

A16 – Design Agents

The next activity is also specific to ADELFE and added to the RUP (A16) to let
the designer refine the «cooperative agent»-stereotyped classes he/she has
previously defined (during A12 & A15). The different modules composing an
agent must be given in this activity, as well as their physical properties (e.g.,

Table 3. WD4 – Design in ADELFE – Its aim is to define the system
architecture.

A14: Study detailed architecture and multi-agent model
 S1: Determine packages
 S2: Determine classes
 S3: Use design-patterns
 S4: Elaborate component and class diagrams
A15: Study interaction languages

A16: Design agents
 S1: Define skills
 S2: Define aptitudes
 S3: Define interaction languages
 S4: Define world representations
 S5: Define Non Cooperative Situations
A17: Fast prototyping
A18: Complete design diagrams
 S1: Enhance design diagrams
 S2: Design dynamic behaviours

Published in B. Henderson-Sellers and P. Giorgini, editors, Agent Oriented Methodologies, chapter 7, pages 172-202, Idea Group Publishing, 2005.

Engineering Adaptive Multi-Agent Systems: The ADELFE Methdology 191

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

weight, color, etc.). Each step composing this activity must be applied to every
previously identified agent.

A16 – S1: Design Skills

Methods and attributes describing the skills of an agent must be given and
stereotyped with «skill» (A16-S1).

In the case study, the skills of a TA are those of the entity it represents. For
example, TAs communicate by forwarding the current request according to their
representations, in order to find a relevant service provider to solve this request.
When the TA of a relevant service provider is found, this TA must then use a
method to ask the service provider to give a response to the request. This method
getInfo is tagged with the «skill» stereotype, that is, «skill» Info getInfo (Request
request).

A16 – S2: Design Aptitudes

Aptitudes of an agent must be provided, also using attributes and methods
stereotyped with «aptitude» (A16-S2).

In the case study, aptitudes enable a TA to modify its representations and to
interpret a received request. For example, when an end-user makes a request,
his/her TA has to update its representations to learn the new centres of interest
of its end-user. The method updateMyBelief enables the representations to be
changed and is tagged with the «aptitude» stereotype, that is, «aptitude» int
updateMyBelief (Request request).

A16 – S3: Design Interaction Languages

Among the protocols identified during A15, the designer chooses those used by
an agent to interact with others. Assigning an interaction protocol to an agent
automatically associates a state-machine with this agent. Attributes and methods
linked with an interaction protocol must be stereotyped with «interaction» (A16-
S3).

In the case study, messages exchanged between TAs deal with the requests to
be resolved. Physical exchanges of these requests can be made using the
mailbox concept, a buffer enabling asynchronous communication. Therefore, the
attribute mailbox of a TA is tagged with the «interaction» stereotype, that is,
«interaction» MailBox myMailBox.

The only way to interact is by means of message passing. The methods relating
to these message exchanges that are used during the perception phase (respec-
tively the action phase) are stereotyped with «perception» (respectively with

Published in B. Henderson-Sellers and P. Giorgini, editors, Agent Oriented Methodologies, chapter 7, pages 172-202, Idea Group Publishing, 2005.

192 Bernon, Camps, Gleizes & Picard

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

«action»). For example, the method used by a TA to get a message from its
mailbox is tagged by the «perception» stereotype, that is, «perception» Message
getMessage().

The method to send messages is stereotyped with «action», that is, «action»void
sendMessage (Message AMessage, Reference Dest).

A16 – S4: Design Representations

Attributes and methods that enable an agent to create its own representation
about itself, other agents, or the environment it perceives are identified and
stereotyped with «representation» (A16-S4).

In the case study, representations that an agent possesses about itself or about
other TAs may evolve at runtime and they have then to be adjusted. We choose
to use an AMAS to implement them. When a TA receives a request, it has to
query its representation on itself to know if it is relevant to solve this request. The
class TA needs the following attribute to access this component, that is,
«representation» LocalBelief MyBelief.

A16 – S5: Design Characteristics

In the next step (A16-S5), the intrinsic or physical properties of an agent have
to be described and tagged by the «characteristic» stereotype.

In the case study, the physical address of a TA, called myReference, represents
the address of the TA in the system, that is «characteristic» Reference MyReference;
and the method to get its value is: «characteristic» Reference getReference(char
*Name).

A16 – S6: Design Non Cooperative Situations

This is the most important step in this activity because the ability to detect and
remove Non Cooperative Situations is specific to cooperative agents (A16-S5).
A model (cf. Table 4) is available to help the designer to enumerate all the
situations that seem to be “harmful” for the cooperative social attitude of an
agent. It reminds the designer that these situations belong to several types (such
as ambiguity, uselessness, etc.) and are dependent on some conditions (one or
several) that may be fulfilled or not when the agent is performing a certain phase
in its lifecycle (perception, decision, action).

In the case study, if we only consider the decision phase, three NCS can be
identified. All of them depend on only one condition as shown in Table 5.

After having identified every NCS an agent could encounter, the designer fills
up a second type of table (see Table 6) that describes each NCS. This description

Published in B. Henderson-Sellers and P. Giorgini, editors, Agent Oriented Methodologies, chapter 7, pages 172-202, Idea Group Publishing, 2005.

Engineering Adaptive Multi-Agent Systems: The ADELFE Methdology 193

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

may be only a textual one to be a guide to find afterwards the methods related
to the detection and removal of the NCS. This table contains:

• The state of this agent when detecting this NCS,

• A textual description of the NCS,

• Conditions describing the different elements permitting local detection of
the NCS, and

• The actions linked to this NCS which describe what an agent has to do to
remove it.

If the designer wants to be more precise and formal, he/she may also specify
what attributes and methods will be used to express the state, conditions, and
actions. Rules embedded in OpenTool will verify the consistency of their
stereotyping. To express a state, only the «perception», «characteristic» or
«representation» stereotypes will be used. Those stereotypes used to express
conditions will be «perception» or «representation», and methods and attributes
related to actions must be stereotyped with «action» or «skill».

Table 4: Generic Non Cooperative Situations – Different kinds of generic
NCS exist. This table helps the designer to identify the involved ones
depending on the agent’s lifecycle step and the fulfilled conditions.

Table 5: Table 4 Partially Filled up for the Case Study – Only the “decision”
phase is considered.

 Condition 1 not fulfilled Condition 1 fulfilled
 Condition 2 not

fulfilled
Condition 2

fulfilled
Condition 2 not

fulfilled
Condition 2

fulfilled

Perception Incomprehension?
Ambiguity?

Incomprehension?
Ambiguity?

Incomprehension?
Ambiguity?

Incomprehension?
Ambiguity?

Decision Incompetence?
Unproductiveness?

Incompetence?
Unproductiveness?

Incompetence?
Unproductiveness?

Incompetence?
Unproductiveness?

Action
Concurrence?
Conflict?
Uselessness?

Concurrence?
Conflict?
Uselessness?

Concurrence?
Conflict?
Uselessness?

Concurrence?
Conflict?
Uselessness?

 A TA cannot extract any
informative content from
the received message

A TA can extract an
informative content from

only one part of the
received message

A TA can extract several
informative content from the

received message

Decision Total Incompetence Partial incompetence Ambiguity

Published in B. Henderson-Sellers and P. Giorgini, editors, Agent Oriented Methodologies, chapter 7, pages 172-202, Idea Group Publishing, 2005.

194 Bernon, Camps, Gleizes & Picard

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

For the case study, the main task in this step is to fill up the table describing each
NCS that a TA may encounter. Four situations have been highlighted and are
textually described below.

Table 6. Description of the NCS that a TA may encounter

Name Total incompetence
State Receipt of a request

Description
An agent faces total incompetence when it cannot associate any meaning to the message it
received: this may be due to an error in transmission or if the transmitter gets a wrong belief
about it.

Conditions
During the interpretation phase the agent compares the received request with its own
representation (words matching) and cannot extract any informative content from the
message; it has not the necessary competence.

Actions
Because the agent is cooperative, the misunderstood message is not ignored; the agent will
transmit the message to an agent that seems to be relevant according to its representations
on others.

Name Partial incompetence
State Receipt of a request

Description An agent is faced with partial incompetence when only one part of the received message
has a meaning for it.

Conditions
During the interpretation phase the agent compares the received request with its own
representation (words matching) and can extract an informative content from only a part of
the message.

Actions The receiving agent sends back the partial answer associated with the understood part of
the message. It sends the other part of the request to a more relevant agent.

Name Ambiguity
State Receipt of a request

Description
An ambiguity occurs when the content of a received request is incomplete either because
the sender gets a bad description of the receiver’s tasks or because the specification of the
message is wrong.

Conditions
During the interpretation phase the agent compares the received request with its own
representation (words matching) and can extract several informative contents from the
message.

Actions

An agent is supposed to intentionally and spontaneously send understandable data to the
others. Therefore, the receiver of an ambiguous message sends back all its interpretations
of the received request. The initial sender is then able to choose the most pertinent one and
update its representation about the receiver’s skills.

Name Concurrence
State Receipt of a request
Description A situation of concurrence occurs when two agents have similar skills for a given task.

Conditions

During the interpretation phase, the agent compares the received request with its own
representation (words matching). If it can extract an informative content from only a part of
the request, the agent compares this request with the representation it has about other
agents to find rival agents. An agent A competes with an agent B, from B’s point of view, if
A can extract informative content from the same part of the request as B.

Actions Redundancy is beneficial when an agent has not been able to reach its aim or to accept a
task it has been asked to undertake. In these cases, it refers the problem to its rival(s).

Published in B. Henderson-Sellers and P. Giorgini, editors, Agent Oriented Methodologies, chapter 7, pages 172-202, Idea Group Publishing, 2005.

Engineering Adaptive Multi-Agent Systems: The ADELFE Methdology 195

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

For each table, at least one «cooperation»-stereotyped method has to be defined.
This method corresponds to the NCS detection and will be expressed using the
state and the conditions (i.e. methods and attributes) that are stereotyped with
«perception», «representation» or «characteristic». If several actions are possible
to remove the detected NCS, another method to choose the action to be
undertaken must be defined. This method is stereotyped with «cooperation». If
only one action is possible, the definition of this second method is useless: this
action will always be executed.

A17 – Fast Prototyping

Once the behaviour of the agents involved in the concerned AMAS is defined,
the simulation functionality of OpenTool enables the designer to test them in a
new activity (A17).

This functionality of OpenTool requires a dynamic model (state-chart) for each
simulated entity (object or agent). The customized version of OpenTool is able
to automatically transform a protocol diagram (a particular generic sequence
diagram) into a state-chart. As agents’ behaviours are modelled as AIP protocol
diagrams, OpenTool is then able to simulate this behaviour by running a state-
machine. Therefore, uselessness or inconsistency of protocols, existence of
deadlocks in these protocols, or uselessness or exhaustiveness of methods can
be tested, for instance. This is done by creating the simulation environment using
a UML collaboration diagram in which instances of involved agents are carrying
out the generic protocol, and then, implementing some methods (using the
OTScript language that is the set-based action language of OpenTool) that will
be tested. If the behaviour of an agent is not adequate, the designer has to work
again on it to improve it.

The last activity of the design work definition consists in finalizing the detailed
architecture by enriching class diagrams (A18-S1) and then developing the state-
chart diagrams that are needed to design dynamic behaviours (A18-S2). The
objective is to highlight the different changes of state of an entity when it is
interacting with others. For «cooperative agent»-stereotyped classes that al-
ready have state-machine(s) (coming from A16-S3), the new identified states
have to appear in a new state-machine. This latter will be concurrent with the
first one(s).

By now, ADELFE is only able to guide the designer until this point. The next work
definitions would be those that are stipulated in the RUP: implementation and
test.

Published in B. Henderson-Sellers and P. Giorgini, editors, Agent Oriented Methodologies, chapter 7, pages 172-202, Idea Group Publishing, 2005.

196 Bernon, Camps, Gleizes & Picard

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Strengths and Weaknesses of ADELFE

Strengths of ADELFE

Generally, agent-based and multi-agent based software gives a solution for
complex applications in which the environment is generally constrained. How-
ever, today’s and tomorrow’s applications are complex and open ones; they
evolve in an unpredictable environment, like the Internet, and represent the next
challenge for building software. To take up this challenge, it is necessary to
develop new models, tools, and methodologies.

The main strength of ADELFE (and its specificity) is to provide a methodology
to design Adaptive Multi-Agent Systems coupled with a theory for those
systems. According to the theory (Gleizes et al., 2000), self-organization by
cooperation enables an MAS to adapt itself and to realize a function that it is not
directly coded within its agents. ADELFE is thus a specialized methodology that
deals with only a certain kind of agents—cooperative ones—to build systems in
which the global function emerges from the interactions between these agents.

ADELFE is based on “standards” such as the RUP, UML, or AUML notations
to promote agent-oriented programming in an industrial world where object-
oriented software engineering is the norm.

Furthermore, as previously seen, ADELFE provides some tools, notably the
interactive tool that helps the designer to not only follow and apply the process
but also to produce the different artifacts needed during the process lifecycle.
OpenTool, the graphical modelling tool linked with ADELFE, supports the UML
notation and has been modified to integrate some AUML diagrams. For industry,
it is very important to know very early whether the system to be developed
justifies some investment in a new methodology or technique. Therefore,
ADELFE guides the developer in making the decision as to if and where AMAS
technology is required in the system being developed. This explains the impor-
tance of the adequacy checking in the analysis workflow and the adequacy tool
that analyses criteria given by the designer to decide if this technology is useful.
If the application is not suited to AMAS technology, the designer could use
another agent-oriented methodology.

ADELFE does not suppose that the agents in the designed system are known in
advance and offers a specific activity and some criteria to help the designer to
identify what entities in the system require implementation as agents. To decide
whether entities should be considered as agents, their features must be studied
as well as the interactions and the cooperation failures they may have.

Published in B. Henderson-Sellers and P. Giorgini, editors, Agent Oriented Methodologies, chapter 7, pages 172-202, Idea Group Publishing, 2005.

Engineering Adaptive Multi-Agent Systems: The ADELFE Methdology 197

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The autonomous behaviour of an agent, which results from its perceptions,
knowledge, and beliefs, is very difficult to define in complex systems and in
dynamic systems. Actually it is very difficult to enumerate all possible actions for
each state of the environment. ADELFE specifically deals with AMAS;
following the theory, it only deals with a specific kind of agent architecture. The
methodology then provides cooperative agent architecture and some means to
endow an agent with a cooperative behaviour. Skills or representations of a
cooperative agent may evolve if this agent has to adjust them. In that case, they
will be implemented using AMAS, and the developer may reuse the entire
methodology to develop a part of the behaviour of an agent — ADELFE is a
recursive or iterative methodology. Finally, the greatest difficulty in this behaviour
definition is to identify Non Cooperative Situations that an agent may encounter,
and some models are given to help the designer to find these.

An automatic transformation from collaboration diagrams into state-machines
has been added to OpenTool to allow their simulation. Once the agents are
defined, this specific activity may be used to test the behaviour of an agent to
improve it if needed.

Modularity is also an important strength of ADELFE. It has been based on an
interpretation of the RUP by adding some specific activities and steps, namely,
those related to the AMAS technology. The process of ADELFE can then be
decomposed into fragments that may be reused in other agent-oriented method-
ologies3. It would also be easier to integrate pieces coming from other method-
ologies into ADELFE. For instance, if the AMAS technology is useless, it would
be interesting to guide the designer towards a step of another methodology more
suited for his/her problem.

Limitations of ADELFE

The main strength of ADELFE could also be its major limitation; it is specialized
and therefore cannot be used to design all the existing applications or to model
all types of agents (e.g., BDI). For instance, to design a system such as
simulation software, embedding it within another system such as a simulation
platform, would be needed. Preliminary steps would therefore be required to
design the whole simulation software by studying the most external system and
expressing the needs of the user simulation (such as statistical results, observa-
tion algorithms, etc.). Nevertheless, this limitation by specialization is lessened
by integrating the AMAS adequacy verification activity into the process.
Furthermore, this limit could also be removed by coupling another methodology
with ADELFE. It would then be interesting to have a more general methodology

Published in B. Henderson-Sellers and P. Giorgini, editors, Agent Oriented Methodologies, chapter 7, pages 172-202, Idea Group Publishing, 2005.

198 Bernon, Camps, Gleizes & Picard

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

coupled with ADELFE in order to take into account both problem solving and
simulation software design.

Some activities could be improved, especially the fast prototyping one. For the
moment, it only enables the designer to test the behaviour of the defined agents
and validate them according to the specifications. We would like to improve this
activity to provide greater help during the design and implementation of agents.
The designer would be able to interact with the system during its design for
improving the behaviour of agents by adding or removing some parts of it.

Some work definitions are still lacking. At the present time, no operational tool
such as a platform or a set of software tools is coupled to ADELFE to guide
implementation, testing, or deployment.

The interactive tool is linked with OpenTool and verifies the production of
artifacts to make the designer progress in the process application. Although there
is no automated tool for consistency checking of the different activities results,
it is a future targeted improvement.

Finally a disadvantage of ADELFE is common to all design methods, the
graphical modelling tool is complex, and sometimes the designer may find it
difficult to use.

Purposeful Omissions

Some purposeful omissions were made in ADELFE, mainly due to the fact that
ADELFE tries to constrain the agent behaviour with a cooperative attitude.

Therefore, the role notion is useless because designers have only to focus on the
ability an agent possesses to detect and solve cooperation failures. If a designer
gives roles to agents, by describing a task or protocols, he/she will establish a
fixed organization for these agents. However, a fixed organization in an AMAS
is not welcomed because this organization must evolve to allow the system to
adapt.

Neither does the goal notion appear. The goal an agent has to achieve is modelled
by its skills, aptitudes, and representations; using the term “goal” in one of the
ADELFE models is not useful.

Using an ontology can be motivated by the agent granularity and may become
useful if agents are coarse-grained. But according to the AMAS theory, if agents
have to adapt themselves to their environment, they are also able to adapt to the
other agents. This adaptation can lead agents to learn to understand each other
making the use of ontology not essential in ADELFE.

Published in B. Henderson-Sellers and P. Giorgini, editors, Agent Oriented Methodologies, chapter 7, pages 172-202, Idea Group Publishing, 2005.

Engineering Adaptive Multi-Agent Systems: The ADELFE Methdology 199

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Conclusion

This chapter devoted to the ADELFE methodology has first presented the
theoretical background that led to the development of this specialized method-
ology. Unpredictable situations due to interactions between agents or to the
openness of the environment are locally processed by agents composing the
system. Locally processing these cooperation failures is enough to change the
system organization, without relying on the knowledge of the global function that
must be obtained, and therefore to make the system adapt.

The ADELFE toolkit also provides some tools that have been briefly presented
in a second part: an interactive tool to help the designer to follow the process, a
graphical modelling tool to support the use of the dedicated notation, and an
AMAS adequacy tool to warn the designer if the problem is not suited to this kind
of technology.

The process of ADELFE is based on the RUP and uses UML and AUML
notations. It has been described in the third section of this chapter, using an
information system case study to better visualize how to apply the different
stages.

ADELFE aims at promoting a specific kind of MAS and is not a general
methodology. This specificity is its main strength but also one of its limitations.
Therefore, a first perspective of this work would be to define “fragments” that
could be interrelated with others, coming from different complementary method-
ologies. That would enable a designer to build his/her own methodology (adapted
to his/her particular needs) from different existing ones. A second perspective
of our work in the engineering domain would also be to endow ADELFE with a
tool that would automatically transform a meta-model into a model depending on
a target platform in the spirit of OMG’s Model-Driven Architecture (MDA)
initiative4.

Acknowledgements

We would like to thank the support of the French Ministry of Economy, Finance,
and Industry, as well as our partners,: TNI-Valiosys Ltd. (for their customization
of Open-Tool), ARTAL technologies Ltd., and the IRIT software engineering
team (for their help and work on UML and SPEM).

Published in B. Henderson-Sellers and P. Giorgini, editors, Agent Oriented Methodologies, chapter 7, pages 172-202, Idea Group Publishing, 2005.

200 Bernon, Camps, Gleizes & Picard

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

References

Bernon, C., Camps, V., Gleizes, M-P., & Picard, G. (2004). Tools for self-
organizing applications engineering. In G. Di Marzo Serugendo, A.
Karageorgos, O. F. Rana, & F. Zambonelli (Eds.), First International
Workshop on Engineering Self-Organizing Applications (ESOA),
Melbourne, Australia, LNCS 2977, Berlin: Springer-Verlag.

Bernon, C., Gleizes, M-P., Peyruqueou, S., & Picard, G. (2002). ADELFE, a
methodology for adaptive multi-agent systems engineering. In P. Petta, R.
Tolksdorf, & F. Zambonelli (Eds.), Third International Workshop “En-
gineering Societies in the Agents World” (ESAW), LNAI 2577, pp. 156-
169. Berlin: Springer-Verlag.

Brazier, F. M. T., Jonker, C. M., & Treur, J. (1999). Compositional design and
reuse of a Generic agent model. In Proceeding of Knowledge Acquisition
Workshop (KAW’99).

Camps, V., Gleizes, M-P., & Glize, P., (1998). A self-organization process based
on cooperation theory for adaptive artificial systems. In Proceedings of
the First International Conference on Philosophy and Computer
Science “Processes of Evolution in Real and Virtual Systems”, pp. 2-
4, Krakow, Poland.

Capera, D., Georgé, J-P., Gleizes, M-P., & Glize, P. (2003). The AMAS theory
for complex problem solving based on self-organizing cooperative agents.
In Proceedings of the First International Workshop on Theory and
Practice of Open Computational Systems (TAPOCS03@WETICE 2003),
Linz, Austria.

Desfray, P., (2000). UML profiles versus metamodel extensions: An ongoing
debate. OMG’s UML Workshops: UML in the .com Enterprise: Mod-
eling CORBA, Components, XML/XMI and Metadata Workshop, No-
vember.

Georgé J-P., Gleizes, M-P., Glize, P., & Régis, C., (2003). Real-time simulation
for flood forecast: An adaptive multi-agent system STAFF. In Proceed-
ings of the AISB’03 symposium on Adaptive Agents and Multi-Agent
Systems, Univ. of Wales, Aberystwyth.

Gleizes, M-P., Georgé, J-P., & Glize, P., (2000). A theory of complex adaptive
systems based on co-operative self-organisation: Demonstration in elec-
tronic commerce. In Proceedings of the Self-Organisation in Multi-
Agent Systems Workshop (SOMAS), Milton Keynes, UK.

Gleizes, M-P., Glize, P. & Link-Pezet, J., (2003). An adaptive multi-agent tool
for electronic commerce. In the Proceedings of the IEEE 9th Interna-

Published in B. Henderson-Sellers and P. Giorgini, editors, Agent Oriented Methodologies, chapter 7, pages 172-202, Idea Group Publishing, 2005.

Engineering Adaptive Multi-Agent Systems: The ADELFE Methdology 201

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

tional Workshops on Enabling Technologies: Infrastructure for Col-
laborative Enterprises (WET ICE’00), Gaithersburg, Maryland.

Gleizes, M-P., Millan, T., & Picard, G., (2003a). ADELFE: Using SPEM
notation to unify agent engineering processes and methodology. IRIT
Internal Report 2003-10-R.

Iglesias, C.A., Garijo, M. & Gonzalez, J.C., (1998). A survey of agent-oriented
methodologies. In Proceedings of the Fifth International Workshop on
Intelligent Agents V, Agent Theories, Architectures, and Languages,
pp. 317-330.

Kruchten, P. (2000). The rational unified process: An introduction. Reading,
MA: Addison Wesley.

Odell, J., Van Dyke Parunak, H., & Bauer, B., (2000). Extending UML for
agents. In Proceedings of the Agent Oriented Information Systems
(AOIS) Workshop at the 17th National Conference on Artificial
Intelligence (AAAI).

Odell, J., Van Dyke Parunak, H., & Bauer, B., (2001). Representing agent
interaction protocols in UML. In Proceedings of the First International
Workshop on Agent-Oriented Software Engineering (AOSE’00), Lim-
erick, Ireland, pp. 121-140. Berlin: Springer-Verlag.

OMG, (2002). Software Process Engineering Metamodel Specification.
Retrieved from: http://cgi.omg.org/docs/formal/02-11-14.pdf

Picard, G. (2003). UML stereotypes definition and AUML notations for ADELFE
methodology with OpenTool. First European Workshop on Multi-Agent
Systems (EUMAS’03). Oxford, UK.

Piquemal-Baluard, C., Camps, V., Gleizes, M.-P., & Glize, P., (1996). Properties
of individual cooperative attitude for collective learning. In Proceedings of
the Seventh European Workshop on Modelling Autonomous Agents in
a Multi-Agent World (MAAMAW’96), Eindhoven.

Russel, S. & Norvig, P., (1995). Artificial intelligence: A modern approach.
Englewood Cliffs, NJ: Prentice Hall Series.

Shehory, O. & Sturm, A., (2001). Evaluation of modeling techniques for agent-
based systems. In Proceedings of the Fifth International Conference
on Autonomous Agents, pp. 624-631. New York: ACM Press.

Topin, X., Fourcassie, V., Gleizes, M-P., Theraulaz, G., Régis, C., & Glize, P.,
(1999). Theories and experiments on emergent behaviour: From natural to
artificial systems and back. In Proceedings of the European Conference
on Cognitive Science, Siena.

Wood, M. & DeLoach, S. (2000). An overview of the multiagent systems
engineering methodology. In Proceedings of the First International

Published in B. Henderson-Sellers and P. Giorgini, editors, Agent Oriented Methodologies, chapter 7, pages 172-202, Idea Group Publishing, 2005.

202 Bernon, Camps, Gleizes & Picard

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Workshop on Agent-Oriented Software Engineering (AOSE’00), Lim-
erick, Ireland, pp. 207-221. Berlin: Springer- Verlag.

Wooldridge, M. (2002). An introduction to multi-agent systems. New York:
Wiley.

Endnotes

1 Agents and MASs notions are introduced in Chapter 1.
2 See Chapter 1 for more details about modelling languages.
3 Ed. As will be discussed in Chapter 13.
4 Some hints about MDA are given in Chapter 1.

