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Unmanned Traffic Management

• Concepts of operations are still work in
progress [FEDERAL AVIATION AGENCY, 2023]

• Numerous challenging optimization
problems [HAMADI, 2020]

• Centralized [BENNACEUR et al., 2022; PELEGRÍN et al., 2023;

VERMA et al., 2022] and decentralized approaches
[HO et al., 2019; PICARD, 2022; POLISHCHUK, 2018] to UTM

Our focus: 4D trajectory repair
• Free Route Airspace
• Multi-criteria decisions at the UAS level
• UAVs can directly exchange information via V2V communication
• Tactical and reactive coordination mechanisms between several (semi-)autonomous UAS
• Focus on small UAVs able to perform stationary flight and operating at low altitude
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Core Concepts

• UAV: u = (p; s; d; c; !)
• p = (x; y; z; t) ∈ R4

• s = (h; v; a) ≤ (hmax ; vmax ; amax ) ∈ R3

• d ∈ [0; 2Π]
• c is its current state of charge
• ! is its 4D trajectory/contract

• Trajectory/4D Contract: a set W ⊂ R4 of 4D
points w = (x; y ; z; t)

(We will only consider several planes
separated by a constant height)

• Safety tube: fi = (h; v ; t) is defined
horizontally, vertically and timely

• Conflict: when two trajectores expended by
their safety tubes intersect spacially and
timely
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Building 4D Trajectories

• Classical operational optimization problem
• Very well studied in the context of aircraft traffic management [DELAHAYE et al., 2014; DELAHAYE and

PUECHMOREL, 2013]

• Building conflict-free trajectories is a hard optimization problem
• e.g. simulated annealing ISLAMI et al., 2017 or evolutionary algorithms [YAN and CAI, 2017]

• Small UAVs able to change direction and speed in a more flexible way than classical aircrafts,
it’s still hard

• e.g. PSO [ALEJO et al., 2013] or multi-agent systems [ZHAO et al., 2020]

• Here, unstructured, free route airspace, contrary to usual ATM operational concepts
[NAVA–GAXIOLA et al., 2018]
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Repairing 4D Trajectories

We focus on the repair procedure; not the generation of the initial set of trajectories

4D-Contract Repair Problem
Given a set of UAVs U, the 4D-Contract Repair Problem (or 4D-CRP) amounts to find a set of
corrective actions to solve all the conflicts between the trajectories of the UAVs from U, whilst
minimizing the overall cost of the corrective actions

pla
ne
z

pla
ne
z
+
h

(a) elevate(c; h) (b) skip(c)

Such a problem is non-trivial and may require some trade-off; e.g. skipping conflicting segments
improves safety but reduces quality of service
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Deconfliction Actions and Behaviors

Conflicts consist in intersections on the same plane + UAVs can perform stationary flight
⇒ 3 main options are opened for updating the contracts

Atomic Corrective Actions
• postpone : delay the next waypoints by a given duration
• elevate : create a bridge to avoid the conflict
• skip : bypass the waypoint just after the conflict

If a UAV decides alone of such action, it may generate not repair the trajectory properly wrt. our
optimization criteria

⇒ We need to install some coordination (and optimization)!
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Cost of Corrective Actions

We consider the following functions to assess the cost of action a regardless of which UAV is
performing it.

»c(a) : difference between the initial number of conflicts before and after performing a

»b(a) : energy consumption resulting from performing action a

»d(a) : delay resulting from performing the action a

»w (a) : number of missed waypoints

As to implement a multi-objective evaluation, we consider the criteria in a lexicographic manner, e.g.
the »c ≻ »w

We also propose to use criteria related to past concessions:

»b(u) : total energy conceded during past corrective actions performed by u

»d(u) : total delay conceded during corrective actions performed by u

»w (u) : total number of waypoints withdrawn during past corrective actions performed by u

As to ensure safety, we will consider in our experiments lexicographic criteria with »c as top-priority
(»c ≻ » for any » ̸= »c )
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Solving the 4D-CRP

We introduce three algorithms we have implemented to solve 4D-CRP
• Graph Search (centralized)

• Explore the space of possible conflicts
• Find the best sequence of corrective actions

• Auctions (semi-centralized)
• Each UAV bids to solve each conflict sequentially
• For each conflict, the UAV with the best cost will perform the corrective action

• DCOPs (decentralized)
• For each conflict, the set of impacted UAVs solve a distributed constraint optimization problem
• No need for a central authority

We propose sequential action-selection algorithms, as to select corrective actions, in a reactive
manner
We consider conflicts in a chronological order, which aligns with the necessity for corrective
actions to be comprehensible to human monitoring operators
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Experimental Evaluation

Environment
• We consider an area of 2km by 2km,

with vertical airspace planes at 20m,
40m and 60m

• We consider hmax = 18m:s−1,
vmax = 6m:s−1, amax = Π=2rad:s−1,
∆hmax = ∆vmax = 6m:s−2,
∆amax = Π=2rad:s−2

• Initial speed is set to (0; 0; 0)

• Initial UAV trajectories are randomly
generated with 30 way-points

• Safety tubes are defined by
(h; v ; t) = (30; 15; 1)

• Number of UAVs in {5; 10; 15; 20; 25}
• 30000mAh batteries
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Experimental Evaluation (cont.)

Unpredictable events
• 10 emergency trajectories
• each simulated second there is also a 5% chance an incident occurs close to a randomly

chosen UAV
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Experimental Evaluation (cont.)

Algorithms
• ucs, which solves conflicts with the

centralized solver based on graph
search

• ssi, which solves conflicts with the
sequential single item auctions

• scdcop, which solves conflicts (one by
one) with AFB

Actions
• postpone(c; d) with d ∈ {20; 40; 60}
• elevate(c;±20)

• skip(c)

Criteria
Actions are evaluated using some lexico-
graphic criteria, which all have »c first (to
ensure safety), and always use random as
a final tie-breaker

• b ≡ »c ≻ »b

• d ≡ »c ≻ »d

• w ≡ »c ≻ »w

• wd ≡ »c ≻ »w ≻ »d

• bwd ≡ »c ≻ »b ≻ »w ≻ »d

• b concession ≡ »c ≻ »b ≻ »b

• d concession ≡ »c ≻ »d ≻ »d

• w concession ≡ »c ≻ »w ≻ »w .
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Result Analysis
Effects of criteria on action choices
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Figure: Decisions made by the different evaluation cost criteria when used with ucs solver.

• d and d concession criteria prefer using postpone actions and promote skip and then elevate actions as to reduce delay

• w, wd and w concession favor elevate to keep as many waypoints as possible

• b, bwd and b concession tend to achieve compromises between the two aforementioned families
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Result Analysis (cont.)
Comparison of 4D-CRP solvers
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Figure: Average values over 20 instances for several performance metrics with increasing number of UAVs.

• ssi triggers far more corrective actions of any type
• ssi requires almost 8 times less information sharing than scdcop
• ssi struggles on some settings (size 10)

• scdcop tends to trigger more actions than ucs

• scdcop saves as many waypoints as ucs on larger settings
sequences.
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Result Analysis (cont.)
Comparison of 4D-CRP solvers
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Figure: Results for one simulation with 25 UAVs and 10 emergency procedures (gray dashed) and 46 incidents
(gray dotted).

• ucs mostly repair conflicts at the beginning of the scenario

• sdcop triggers few actions all along the time line

• ssi’s sequences are often revised until the end of the scenario
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Conclusions

Our Approach
This paper investigates solutions for the 4D-Contract Repair Problem (4D-CRP) in UAV traffic
management

• We evaluated different solvers: ucs, ssi, and scdcop
• We defined action cost functions considering immediate consequences and past

concessions
• We integrated energy consumption to promote battery-saving actions (adheres to

regulations like [EUROPEAN UNION AVIATION SAFETY AGENCY (EASA), 2022])
• We evaluated various solver-criteria combinations in a conflicting airspace scenario

This approach offers UTM stakeholders flexibility and understanding for choosing coordination
mechanisms
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Conclusions (cont.)

Benefits and Future Work
• Flexible and understandable mechanisms (centralized/decentralized) for trajectory

correction
• Diverse criteria for improved acceptability and explainable decisions
• Advantages of considering concessions, especially with heterogeneous fleets
• Need for evaluation in larger, multi-hour scenarios with numerous UAV iterations
• Investigation of market-based (non-cooperative) approaches
• Human-in-the-loop experiments for adapting explanations and user understanding

Conclusion
UTM deconfliction algorithms need to evolve with:

• Social acceptability
• Algorithmic advancements (future urban airspace information)
• Fleet deconfliction preferences

This work paves the way for a new class of adaptable UTM deconfliction algorithms
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Merci pour votre attention !
Des questions ?
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